Shark jaws exhibit teeth that are arranged into distinct series and files and display great diversities in shapes and structures, which not only is related to their function (grasping, cutting, crushing) during feeding, but also bear a strong phylogenetic signal. So far, most research on the relationship between shark teeth and feeding ecology and systematics focused on the external tooth morphology only. Although the tooth histology of sharks has been examined since the early 19th century, its functional and systematic implications are still ambiguous. Shark teeth normally consist of either a porous, cellular dentine, osteodentine (in lamniform sharks and some batoids) or a dense layer of orthodentine (known from different sharks). Sharks of the order Carcharhiniformes, comprising ca. 60% of all extant shark species, are known to have orthodont teeth, with a single exception—the snaggletooth shark, Hemipristis elongata. High resolution micro-CT images of jaws and teeth from selected carcharhiniform sharks (including extant and fossil snaggletooth sharks) and tooth sections of teeth of Hemipristis, other carcharhiniform and lamniform sharks, have revealed that (1) Hemipristis is indeed the only carcharhiniform shark filling its pulp cavity with osteodentine in addition to orthodentine, (2) the tooth histology of Hemipristis elongata differs from the osteodont histotype, which evolved in lamniform sharks and conversely represents a modified orthodonty, and (3) this modified orthodonty was already present in extinct Hemipristis species but the mineralization sequence has changed over time. Our results clearly show the presence of a third tooth histotype—the pseudoosteodont histotype, which is present in Hemipristis. The unique tooth histology of lamniform sharks might provide a phylogenetic signal for this group, but more research is necessary to understand the phylogenetic importance of tooth histology in sharks in general.
During their evolutionary history, modern sharks developed different tooth mineralization patterns that resulted in very distinct histological patterns of the tooth crown (histotypes). To date, three different tooth histotypes have been distinguished: (i) orthodont teeth, which have a central hollow pulp cavity in the crown, encapsulated by a prominent layer of dentine (orthodentine); (ii) pseudoosteodont teeth, which have their pulp cavities secondarily replaced by a dentinal core of porous dentine (osteodentine), encased by orthodentine; and (iii) osteodont teeth, which lack orthodentine and the whole tooth crown of which consists of osteodentine. The aim of the present study was to trace evolutionary trends of tooth mineralization patterns in modern sharks and to find evidence for the presence of phylogenetic or functional signals. High resolution micro-computed tomography images were generated for the teeth of members of all nine extant shark orders and the putative stem group †Synechodontiformes, represented here by three taxa, to examine the tooth histology non-destructively. Pseudoosteodonty is the predominant state among modern sharks and represents unambiguously the plesiomorphic condition. Orthodonty evolved several times independently in modern sharks, while the osteodont tooth histotype is only developed in lamniform sharks. The two shark orders Heterodontiformes and Pristiophoriformes showed highly modified tooth histologies, with Pristiophorus exhibiting a histology only known from batomorphs (i.e. rays and skates), and Heterodontus showing a histological difference between anterior and posterior teeth, indicating a link between its tooth morphology, histology and durophagous lifestyle. The tooth histotype concept has proven to be a useful tool to reflect links between histology, function and its taxonomic value for distinct taxa; however, a high degree of variation, especially in the pseudoosteodont tooth histotype, demonstrates that the current histotype concept is too simplistic to fully resolve these relationships. The vascularization pattern of the dentine might offer new future research pathways for better understanding functional and phylogenetic signals in the tooth histology of modern sharks.
The cartilaginous fishes (Chondrichthyes) have a rich fossil record which consists mostly of isolated teeth and, therefore, phylogenetic relationships of extinct taxa are mainly resolved based on dental characters. One character, the tooth histology, has been examined since the 19 th century, but its implications on the phylogeny of Chondrichthyes is still in debate. We used high resolution micro-CT images and tooth sections of 11 recent and seven extinct lamniform sharks to examine the tooth mineralization processes in this group. Our data showed similarities between lamniform sharks and other taxa (a dentinal core of osteodentine instead of a hollow pulp cavity), but also one feature that has not been known from any other elasmobranch fish: the absence of orthodentine. Our results suggest that this character resembles a synapomorphic condition for lamniform sharks, with the basking shark, Cetorhinus maximus , representing the only exception and reverted to the plesiomorphic tooth histotype. Additionally, † Palaeocarcharias stromeri , whose affiliation still is debated, shares the same tooth histology only known from lamniform sharks. This suggests that † Palaeocarcharias stromeri is member of the order Lamniformes, contradicting recent interpretations and thus, dating the origin of this group back at least into the Middle Jurassic.
Sharks have a long and rich fossil record that consists predominantly of isolated teeth due to the poorly mineralized cartilaginous skeleton. Tiger sharks (Galeocerdo), which represent apex predators in modern oceans, have a known fossil record extending back into the early Eocene (ca. 56 Ma) and comprise 22 recognized extinct and one extant species to date. However, many of the fossil species remain dubious, resulting in a still unresolved evolutionary history of the tiger shark genus. Here, we present a revision of the fossil record of Galeocerdo by examining the morphological diversity and disparity of teeth in deep time. We use landmark-based geometric morphometrics to quantify tooth shapes and qualitative morphological characters for species discrimination. Employing this combined approach on fossil and extant tiger shark teeth, our results only support six species to represent valid taxa. Furthermore, the disparity analysis revealed that diversity and disparity are not implicitly correlated and that Galeocerdo retained a relatively high dental disparity since the Miocene despite its decrease from four to one species. With this study, we demonstrate that the combined approach of quantitative geometric morphometric techniques and qualitative morphological comparisons on isolated shark teeth provides a useful tool to distinguish between species with highly similar tooth morphologies.
The Late Jurassic-Early Cretaceous (164–100 Ma) represents one of the main transitional periods in life history. Recent studies unveiled a complex scenario in which abiotic and biotic factors and drivers on regional and global scales due to the fragmentation of Pangaea resulted in dramatic faunal and ecological turnovers in terrestrial and marine environments. However, chondrichthyan faunas from this interval have received surprisingly little recognition. The presence of numerous entire skeletons of chondrichthyans preserved in several localities in southern Germany, often referred to as Konservat-Lagerstätten (e.g., Nusplingen and the Solnhofen Archipelago), provides a unique opportunity of to study the taxonomic composition of these assemblages, their ecological distributions and adaptations, and evolutionary histories in detail. However, even after 160 years of study, the current knowledge of southern Germany’s Late Jurassic chondrichthyan diversity remains incomplete. Over the last 20 years, the systematic study and bulk sampling of southern Germany’s Late Jurassic deposits significantly increased the number of known fossil chondrichthyan genera from the region (32 in the present study). In the present work, the fossil record, and the taxonomic composition of Late Jurassic chondrichthyans from southern Germany are reviewed and compared with several contemporaneous assemblages from other sites in Europe. Our results suggest, inter alia, that the Late Jurassic chondrichthyans displayed extended distributions within Europe. However, it nevertheless also is evident that the taxonomy of Late Jurassic chondrichthyans is in urgent need of revision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.