The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Carotid pulse pressure was a strong independent determinant of carotid artery enlargement and wall thickening, whereas mean blood pressure and brachial pulse pressure were not, indicating the prominent influence of local pulsatile mechanical load on arterial remodeling. These relationships were observed at the site of an elastic artery but not at the site of a muscular artery, suggesting the contribution of cyclic stretching to the pulse pressure-induced arterial remodeling.
Objective-Aldosterone (Aldo) is involved in arterial stiffness and heart failure, but the mechanisms have remained unclear. Galectin-3 (Gal-3), a β-galactoside-binding lectin, plays an important role in inflammation, fibrosis, and heart failure. We investigated here whether Gal-3 is involved in Aldo-induced vascular fibrosis. Methods and Results-In rat vascular smooth muscle cells Gal-3 overexpression enhanced specifically collagen type I synthesis. Moreover Gal-3 inhibition by modified citrus pectin or small interfering RNA blocked Aldo-induced collagen type I synthesis. Rats were treated with Aldo-salt combined with spironolactone or modified citrus pectin for 3 weeks. Hypertensive Aldo-treated rats presented vascular hypertrophy, inflammation, fibrosis, and increased aortic Gal-3 expression. Spironolactone or modified citrus pectin treatment reversed all the above effects. Wild-type and Gal-3 knockout mice were treated with Aldo for 6 hours or 3 weeks. Aldo increased aortic Gal-3 expression, inflammation, and collagen type I in wild-type mice at both the short-and the long-term, whereas no changes occurred in Gal-3 knock-out mice. Conclusion-Our data indicate that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.