International audienceAn extensive understanding in the molecular motions that occur in Nafion® should lead to important development of improved proton exchange membrane for use in fuel cells (PEMFC). As water molecules are added in the system, changes within the Nafion® chain definitely take place. To visualize such a process, molecular dynamics is especially useful. Can information gained at this level of details be useful to propose new molecules, with ultimately better physical properties, such as higher proton conductivity? For this purpose, we first computed non-bond parameters stemming from the study of the trifluorosufonic acid. They are inserted in the pcff force field. We then applied the procedure developed in our lab to extract the glass transition temperature of Nafion® with different water uptakes. The plasticization effect is first confirmed, fostering a molecular analysis. The particular behavior of the sulfur-sulfur distance is revealed, guiding the design of new monomer
Vibrational analysis of triflic acid (TfOH) at different water uptakes was conducted. This molecule mimics the sulfonate end of the Nafion side-chain. As the proton leaves the sulfonic acid group, structural changes within the Nafion side-chain take place. They are revealed by signal shifts in the infrared spectrum. Molecular modeling is used to follow structural modifications that occur during proton dissociation. To confirm the accuracy of the proposed structures, infrared spectra were computed via quantum chemical modeling based on density functional theory. The requirement to use additional diffuse functions in the basis set is discussed. Comparison between simulated infrared spectra of 1 and 2 acid molecules with different water contents and experimental data was performed. An accurate description of infrared spectra for systems containing 2 TfOH was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.