In a Cloud computing data center and especially in a IaaS (Infrastructure as a Service), performance predictability is one of the most important challenges. For a given allocated virtual machine (VM) in one IaaS, a client expects his application to perform identically whatever is the hosting physical server or its resource management strategy. However, performance predictability is very difficult to enforce in a heterogeneous hardware environment where machines do not have identical performance characteristics, and even more difficult when machines are internally heterogeneous as for Asymmetric Multicore Processor machines. In this paper, we introduce a VM scheduler extension which takes into account hardware performance heterogeneity of Asymmetric Multicore Processor machines in the cloud. Based on our analysis of the problem, we designed and implemented two solutions: the first weights CPU allocations according to core performance, while the second adapts CPU allocations to reach a given instruction execution rate (Ips) regardless the core types. We demonstrate that such scheduler extensions can enforce predictability with a negligible overhead on application performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.