Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.
The presence of chemical compounds formed as disinfection by-products (DBPs) is widespread in developed countries, and virtually whole populations are exposed to these chemicals through ingestion, inhalation, or dermal absorption from drinking water and swimming pools. Epidemiological evidence has shown a consistent association between long-term exposure to trihalomethanes and the risk of bladder cancer, although the causal nature of the association is not conclusive. Evidence concerning other cancer sites is insufficient or mixed. Numerous studies have evaluated reproductive implications, including sperm quality, time to pregnancy, menstrual cycle, and pregnancy outcomes such as fetal loss, fetal growth, preterm delivery, and congenital malformation. The body of evidence suggests only minor effects from high exposure during pregnancy on fetal growth indices such as small for gestational age (SGA) at birth. Populations highly exposed to swimming pools such as pool workers and professional swimmers show a higher prevalence of respiratory symptoms and asthma, respectively, although the direction of the association, and thus causality, is not clear among professional swimmers. The risk of asthma, wheezing, eczema, and other respiratory outcomes among children attending swimming pools has been the object of extensive research. Early studies suggested a positive association, while subsequent larger studies found no correlations or showed a protective association. Future research should develop methods to evaluate the effects of the DBP mixture and the interaction with personal characteristics (e.g., genetics, lifestyle), clarify the association between swimming pools and respiratory health, evaluate the occurrence of DBPs in lowand middle-income countries, and evaluate outcomes suggested by animal studies that have not been considered in epidemiological investigations.
Background: Safe drinking water is essential for well-being. Although microbiological contamination remains the largest cause of water-related morbidity and mortality globally, chemicals in water supplies may also cause disease, and evidence of the human health consequences is limited or lacking for many of them.Objectives: We aimed to summarize the state of knowledge, identify gaps in understanding, and provide recommendations for epidemiological research relating to chemicals occurring in drinking water.Discussion: Assessing exposure and the health consequences of chemicals in drinking water is challenging. Exposures are typically at low concentrations, measurements in water are frequently insufficient, chemicals are present in mixtures, exposure periods are usually long, multiple exposure routes may be involved, and valid biomarkers reflecting the relevant exposure period are scarce. In addition, the magnitude of the relative risks tends to be small.Conclusions: Research should include well-designed epidemiological studies covering regions with contrasting contaminant levels and sufficient sample size; comprehensive evaluation of contaminant occurrence in combination with bioassays integrating the effect of complex mixtures; sufficient numbers of measurements in water to evaluate geographical and temporal variability; detailed information on personal habits resulting in exposure (e.g., ingestion, showering, swimming, diet); collection of biological samples to measure relevant biomarkers; and advanced statistical models to estimate exposure and relative risks, considering methods to address measurement error. Last, the incorporation of molecular markers of early biological effects and genetic susceptibility is essential to understand the mechanisms of action. There is a particular knowledge gap and need to evaluate human exposure and the risks of a wide range of emerging contaminants.Citation: Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, Nieuwenhuijsen MJ, Levallois P. 2014. Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environ Health Perspect 122:213–221; http://dx.doi.org/10.1289/ehp.1206229
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.