Our results show that scent is an important flower trait that defines plant-pollinator interactions at the level of individual plants. The genetic basis underlying such a major phenotypic difference appears to be relatively simple and may enable rapid loss or gain of scent through hybridization.
Haematophagous insects are frequently carriers of parasitic diseases, including malaria. The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa and is thus responsible for thousands of deaths daily. Although the role of olfaction in A. gambiae host detection has been demonstrated, little is known about the combinations of ligands and odorant binding proteins (OBPs) that can produce specific odor-related responses in vivo. We identified a ligand, indole, for an A. gambiae odorant binding protein, AgamOBP1, modeled the interaction in silico and confirmed the interaction using biochemical assays. RNAi-mediated gene silencing coupled with electrophysiological analyses confirmed that AgamOBP1 binds indole in A. gambiae and that the antennal receptor cells do not respond to indole in the absence of AgamOBP1. This case represents the first documented instance of a specific A. gambiae OBP–ligand pairing combination, demonstrates the significance of OBPs in odor recognition, and can be expanded to the identification of other ligands for OBPs of Anopheles and other medically important insects.
The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta Abstract In the genus Petunia, distinct pollination syndromes may have evolved in association with bee-visitation (P. integrifolia spp.) or hawk moth-visitation (P. axillaris spp). We investigated the extent of congruence between floral fragrance and olfactory perception of the hawk moth Manduca sexta. Hawk moth pollinated P. axillaris releases high levels of several compounds compared to the bee-pollinated P. integrifolia that releases benzaldehyde almost exclusively. The three dominating compounds in P. axillaris were benzaldehyde, benzyl alcohol and methyl benzoate. In P. axillaris, benzenoids showed a circadian rhythm with an emission peak at night, which was absent from P. integrifolia. These characters were highly conserved among different P. axillaris subspecies and P. axillaris accessions, with some differences in fragrance composition. Electroantennogram (EAG) recordings using flower-blends of different wild Petunia species on female M. sexta antennae showed that P. axillaris odours elicited stronger responses than P. integrifolia odours. EAG responses were highest to the three dominating compounds in the P. axillaris flower odours. Further, EAG responses to odour-samples collected from P. axillaris flowers confirmed that odours collected at night evoked stronger responses from M. sexta than odours collected during the day. These results show that timing of odour emissions by P. axillaris is in tune with nocturnal hawk moth activity and that flower-volatile composition is adapted to the antennal perception of these pollinators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.