In multi-objective multi-agent systems (MOMASs), agents explicitly consider the possible trade-offs between conflicting objective functions. We argue that compromises between competing objectives in MOMAS should be analyzed on the basis of the utility that these compromises have for the users of a system, where an agent’s utility function maps their payoff vectors to scalar utility values. This utility-based approach naturally leads to two different optimization criteria for agents in a MOMAS: expected scalarized returns (ESRs) and scalarized expected returns (SERs). In this article, we explore the differences between these two criteria using the framework of multi-objective normal-form games (MONFGs). We demonstrate that the choice of optimization criterion (ESR or SER) can radically alter the set of equilibria in a MONFG when nonlinear utility functions are used.
The majority of multi-agent system (MAS) implementations aim to optimise agents' policies with respect to a single objective, despite the fact that many real-world problem domains are inherently multi-objective in nature. Multiobjective multi-agent systems (MOMAS) explicitly consider the possible trade-offs between conflicting objective functions. We argue that, in MOMAS, such compromises should be analysed on the basis of the utility that these compromises have for the users of a system. As is standard in multi-objective optimisation, we model the user utility using utility functions that map value or return vectors to scalar values. This approach naturally leads to two different optimisation criteria: expected scalarised returns (ESR) and scalarised expected returns (SER). We develop a new taxonomy which classifies multi-objective multi-agent decision making settings, on the basis of the reward structures, and which and how utility functions are applied. This allows us to offer a structured view of the field, to clearly delineate the current state-of-the-art in multi-objective multi-agent decision making approaches and to identify promising directions for future research. Starting from the execu-
Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.