Abstract-Myocardial G protein-coupled receptor kinase (GRK)2 is a critical regulator of cardiac -adrenergic receptor (AR) signaling and cardiac function. Its upregulation in heart failure may further depress cardiac function and contribute to mortality in this syndrome. Preventing GRK2 translocation to activated AR with a GRK2-derived peptide that binds G  ␥ (ARKct) has benefited some models of heart failure, but the precise mechanism is uncertain, because GRK2 is still present and ARKct has other potential effects. We generated mice in which cardiac myocyte GRK2 expression was normal during embryonic development but was ablated after birth (␣MHC-CreϫGRK2 fl/fl) or only after administration of tamoxifen (␣MHC-MerCreMerϫGRK2 fl/fl) and examined the consequences of GRK2 ablation before and after surgical coronary artery ligation on cardiac adaptation after myocardial infarction. Absence of GRK2 before coronary artery ligation prevented maladaptive postinfarction remodeling and preserved AR responsiveness. Strikingly, GRK2 ablation initiated 10 days after infarction increased survival, enhanced cardiac contractile performance, and halted ventricular remodeling. These results demonstrate a specific causal role for GRK2 in postinfarction cardiac remodeling and heart failure and support therapeutic approaches of targeting GRK2 or restoring AR signaling by other means to improve outcomes in heart failure.
Cardiac-restricted overexpression of the Ca 2+ -binding protein S100A1 has been shown to lead to increased myocardial contractile performance in vitro and in vivo. Since decreased cardiac expression of S100A1 is a characteristic of heart failure, we tested the hypothesis that S100A1 gene transfer could restore contractile function of failing myocardium. Adenoviral S100A1 gene delivery normalized S100A1 protein expression in a postinfarction rat heart failure model and reversed contractile dysfunction of failing myocardium in vivo and in vitro. S100A1 gene transfer to failing cardiomyocytes restored diminished intracellular Ca 2+ transients and sarcoplasmic reticulum (SR) Ca 2+ load mechanistically due to increased SR Ca 2+ uptake and reduced SR Ca 2+ leak. Moreover, S100A1 gene transfer decreased elevated intracellular Na + concentrations to levels detected in nonfailing cardiomyocytes, reversed reactivated fetal gene expression, and restored energy supply in failing cardiomyocytes. Intracoronary adenovirus-mediated S100A1 gene delivery in vivo to the postinfarcted failing rat heart normalized myocardial contractile function and Ca 2+ handling, which provided support in a physiological context for results found in myocytes. Thus, the present study demonstrates that restoration of S100A1 protein levels in failing myocardium by gene transfer may be a novel therapeutic strategy for the treatment of heart failure.
Background— Diminished cardiac S100A1 protein levels are characteristic of ischemic and dilated human cardiomyopathy. Because S100A1 has recently been identified as a Ca 2+ -dependent inotropic factor in the heart, this study sought to explore the pathophysiological relevance of S100A1 levels in development and progression of postischemic heart failure (HF). Methods and Results— S100A1-transgenic (STG) and S100A1-knockout (SKO) mice were subjected to myocardial infarction (MI) by surgical left anterior descending coronary artery ligation, and survival, cardiac function, and remodeling were compared with nontransgenic littermate control (NLC) and wild-type (WT) animals up to 4 weeks. Although MI size was similar in all groups, infarcted S100A1-deficient hearts (SKO-MI) responded with acute contractile decompensation and accelerated transition to HF, rapid onset of cardiac remodeling with augmented apoptosis, and excessive mortality. NLC/WT-MI mice, displaying a progressive decrease in cardiac S100A1 expression, showed a later onset of cardiac remodeling and progression to HF. Infarcted S100A1-overexpressing hearts (STG-MI), however, showed preserved global contractile performance, abrogated apoptosis, and prevention from cardiac hypertrophy and HF with superior survival compared with NLC/WT-MI and SKO-MI. Both Gq-protein–dependent signaling and protein kinase C activation resulted in decreased cardiac S100A1 mRNA and protein levels, whereas Gs-protein–related signaling exerted opposite effects on cardiac S100A1 abundance. Mechanistically, sarcoplasmic reticulum Ca 2+ cycling and β-adrenergic signaling were severely impaired in SKO-MI myocardium but preserved in STG-MI. Conclusions— Our novel proof-of-concept study provides evidence that downregulation of S100A1 protein critically contributes to contractile dysfunction of the diseased heart, which is potentially responsible for driving the progressive downhill clinical course of patients with HF.
S100A1, a Ca 2؉ binding protein of the EF-hand type, is preferentially expressed in myocardial tissue and has been found to colocalize with the sarcoplasmic reticulum (SR) and the contractile filaments in cardiac tissue. Because S100A1 is known to modulate SR Ca 2؉ handling in skeletal muscle, we sought to investigate the specific role of S100A1 in the regulation of myocardial contractility. To address this issue, we investigated contractile properties of adult cardiomyocytes as well as of engineered heart tissue after S100A1 adenoviral gene transfer. S100A1 gene transfer resulted in a significant increase of unloaded shortening and isometric contraction in isolated cardiomyocytes and engineered heart tissues, respectively. Analysis of intracellular Ca 2؉ cycling in S100A1-overexpressing cardiomyocytes revealed a significant increase in cytosolic Ca 2؉ transients, whereas in functional studies on saponinpermeabilized adult cardiomyocytes, the addition of S100A1 protein significantly enhanced SR Ca 2؉ uptake. Moreover, in Triton-skinned ventricular trabeculae, S100A1 protein significantly decreased myofibrillar Ca 2؉ sensitivity ([EC50%]) and Ca 2؉ cooperativity, whereas maximal isometric force remained unchanged. Our data suggest that S100A1 effects are cAMP independent because cellular cAMP levels and protein kinase A-dependent phosphorylation of phospholamban were not altered, and carbachol failed to suppress S100A1 actions. These results show that S100A1 overexpression enhances cardiac contractile performance and establish the concept of S100A1 as a regulator of myocardial contractility. S100A1 thus improves cardiac contractile performance both by regulating SR Ca 2؉ handling and myofibrillar Ca 2؉ responsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.