Evidence suggests that Free/Libre Open Source Software (FLOSS) environments provide unlimited learning opportunities. Community members engage in a number of activities both during their interaction with their peers and while making use of the tools available in these environments. A number of studies document the existence of learning processes in FLOSS through the analysis of surveys and questionnaires filled by FLOSS project participants. At the same time, the interest in understanding the dynamics of the FLOSS phenomenon, its popularity and success resulted in the development of tools and techniques for extracting and analyzing data from different FLOSS data sources. This new field is called Mining Software Repositories (MSR). In spite of these efforts, there is limited work aiming to provide empirical evidence of learning processes directly from FLOSS repositories.In this paper, we seek to trigger such an initiative by proposing an approach based on Process Mining to trace learning behaviors from FLOSS participants' trails of activities, as recorded in FLOSS repositories, and visualize them as process maps. Process maps provide a pictorial representation of real behavior as it is recorded in FLOSS data. Our aim is to provide critical evidence that boosts the understanding of learning behavior in FLOSS communities by analyzing the relevant repositories. In order to accomplish this, we propose an effective approach that comprises first the mining of FLOSS repositories in order to generate Event logs, and then the generation of process maps, equipped with relevant statistical data interpreting and indicating the value of process discovery from these repositories.
Free\Libre Open Source Software (FLOSS) environments are increasingly dubbed as learning environments where practical software engineering skills can be acquired. Numerous studies have extensively investigated how knowledge is acquired in these environments through a collaborative learning model that define a learning process. Such a learning process, identified either as a result of surveys or by means of questionnaires, can be depicted through a series of graphical representations indicating the steps FLOSS community members go through as they acquire and exchange skills. These representations are referred to as a-priori learning models. They are Petri net-like workflow nets (WF-net) that provide a visual representation of the learning process as it is expected to occur. These models are representations of a learning framework or paradigm in FLOSS communities. As such, the credibility of any models is estimated through a process of model verification and validation. Therefore in this paper, we analyze these models in comparison with the real behavior captured in FLOSS repositories by means of conformance verification in process mining. The purpose of our study is twofold. Firstly, the results of our analysis provide insights on the possible discrepancies that are observed between the initial theoretical representations of learning processes and the real behavior captured in FLOSS event logs, constructed from mailing archives. Secondly, this comparison helps foster the understanding on how learning actually takes place in FLOSS environments based on empirical evidence directly from the data
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.