Many organisms can enter a dormant state or diapause to survive harsh environmental conditions for extended durations. When Caenorhabditis elegans larvae enter dauer they arrest feeding but remain active and motile, yet become stress-resistant, extremely long-lived and non-ageing. Entry into dauer is associated with a reduction in insulin-like signalling, the accumulation of nutritive resources and a concomitant global change in metabolism, yet the precise molecular and physiological processes that enable long-term survival in the absence of caloric intake remain largely unknown. We show here that C. elegans larvae that lack LKB1/AMPK (AMP-activated protein kinase) signalling enter dauer normally, but then rapidly consume their stored energy and prematurely expire following vital organ failure. We found that this signalling pathway acts in adipose-like tissues to downregulate triglyceride hydrolysis so that these lipid reserves are rationed to last the entire duration of the arrest. Indeed, the downregulation of adipose triglyceride lipase (ATGL-1) activity suppresses both the rapid depletion of stored lipids and reduced life span of AMPK mutant dauers, while AMPK directly phosphorylates ATGL-1. Finally, we show that the slow release of energy during dauer is critical for appropriate long-term osmoregulation, which fails as triglyceride resources become depleted. These mechanisms may be essential for survival through diapause, hibernation, or long-term fasting in diverse organisms and may also underlie AMPK-dependent life span extension.
In C. elegans, reduced insulin-like signalling induces developmental quiescence, reproductive delay and lifespan extension. We show here that the C. elegans orthologues of LKB1 and AMPK cooperate during conditions of reduced insulin-like signalling to establish cell cycle quiescence in the germline stem cell population, in addition to prolonging lifespan. The inactivation of either protein causes aberrant germline proliferation during diapause-like 'dauer' development, whereas the loss of AMPK uncouples developmental arrest from lifespan extension. Reduced TGF- activity also triggers developmental quiescence independent of the insulin-like pathway. Our data suggest that these two signalling pathways converge on the C. elegans PTEN orthologue to coordinate germline proliferation with somatic development during dauer formation, via the regulation of AMPK and its upstream activator LKB1, rather than through the canonical insulin-like signalling cascade. In humans, germline mutations in TGF- family members, PTEN or LKB1 result in related tumour-predisposing syndromes. Our findings establish a developmental relationship that may underscore their shared, characteristic aetiology.
During development, stem cell populations rapidly proliferate to populate the expanding tissues and organs. During this phase, nutrient status, by systemically affecting insulin/IGF-1 signalling, largely dictates stem cell proliferation rates. In adults, however, differentiated stem cell progeny requirements are generally reduced and vary according to the spatiotemporal needs of each tissue. We demonstrate here that differential regulation of germline stem cell proliferation rates in Caenorhabditis elegans adults is accomplished through localized neutralization of insulin/IGF-1 signalling, requiring DAF-18/PTEN, but not DAF-16/FOXO. Indeed, the specific accumulation of oocytes, the terminally differentiated stem cell progeny, triggers a feedback signal that locally antagonizes insulin/ IGF-1 signalling outputs in the germ line, regardless of their systemic levels, to block germline stem cell proliferation. Thus, during adulthood, stem cells can differentially respond within tissues to otherwise equal insulin/IGF-1 signalling inputs, according to the needs for production of their immediate terminally differentiated progeny.
Under replete growth conditions, abundant nutrient uptake leads to the systemic activation of insulin/IGF-1 signalling (IIS) and the promotion of stem cell growth/proliferation. Activated IIS can stimulate the ERK/MAPK pathway, the activation of which also supports optimal stem cell proliferation in various systems. Stem cell proliferation rates can further be locally refined to meet the resident tissue’s need for differentiated progeny. We have recently shown that the accumulation of mature oocytes in the C. elegans germ line, through DAF-18/PTEN, inhibits adult germline stem cell (GSC) proliferation, despite high systemic IIS activation. We show here that this feedback occurs through a novel cryptic signalling pathway that requires PAR-4/LKB1, AAK-1/AMPK and PAR-5/14-3-3 to inhibit the activity of MPK-1/MAPK, antagonize IIS, and inhibit both GSC proliferation and the production of additional oocytes. Interestingly, our results imply that DAF-18/PTEN, through PAR-4/LKB1, can activate AAK-1/AMPK in the absence of apparent energy stress. As all components are conserved, similar signalling cascades may regulate stem cell activities in other organisms and be widely implicated in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.