On a radial temperature gradient, C. elegans worms migrate, after conditioning with food, toward their cultivation temperature and move along this isotherm. This experience-dependent behavior is called isothermal tracking (IT). Here we show that the neuron-specific calcium sensor-1 (NCS-1) is essential for optimal IT. ncs-1 knockout animals show major defects in IT behavior, although their chemotactic, locomotor, and thermal avoidance behaviors are normal. The knockout phenotype can be rescued by reintroducing wild-type NCS-1 into the AIY interneuron, a key component of the thermotaxis network. A loss-of-function form of NCS-1 incapable of binding calcium does not restore IT, whereas NCS-1 overexpression enhances IT performance levels, accelerates learning (faster acquisition), and produces a memory with slower extinction. Thus, proper calcium signaling via NCS-1 defines a novel pathway essential for associative learning and memory.
The onset of olfactory transduction has been extensively studied, but considerably less is known about the molecular basis of olfactory signal termination. It has been suggested that the highly active cytochrome P450 monooxygenases of olfactory neuroepithelium are termination enzymes, a notion supported by the identification and molecular cloning of olfactory-specific cytochrome P450s (refs. 13-16). But as reactions catalysed by cytochrome P450 (refs 17, 18) often do not significantly alter volatility, lipophilicity or odour properties, cytochrome P450 may not be solely responsible for olfactory signal termination. In liver and other tissues, drug hydroxylation by cytochrome P450 is frequently followed by phase II biotransformation, for example by UDP glucuronosyl transferase (UGT), resulting in a major change of solubility and chemical properties. We report here the molecular cloning and expression of an olfactory-specific UGT. The olfactory enzyme, but not the one in liver microsomes, shows preference for odorants over standard UGT substrates. Furthermore, glucuronic acid conjugation abolishes the ability of odorants to stimulate olfactory adenylyl cyclase. This, together with the known broad spectrum of drug-detoxification enzymes, supports a role for olfactory UGT in terminating diverse odorant signals.
The sense of taste is a chemosensory system responsible for basic food appraisal. Humans distinguish between five primary tastes: bitter, sweet, sour, salty and umami. The molecular events in the perception of bitter taste are believed to start with the binding of specific water-soluble molecules to G-protein-coupled receptors encoded by the TAS2R/T2R family of taste receptor genes. TAS2R receptors are expressed at the surface of taste receptor cells and are coupled to G proteins and second messenger pathways. We have identified, cloned and characterized 11 new bitter taste receptor genes and four new pseudogenes that belong to the human TAS2R family. Their encoded proteins have between 298 and 333 amino acids and share between 23 and 86% identity with other human TAS2R proteins. Screening of a mono-chromosomal somatic cell hybrid panel to assign the identified bitter taste receptor genes to human chromosomes demonstrated that they are located in chromosomes 7 and 12. Including the 15 sequences identified, the human TAS2R family is composed of 28 full-length genes and 16 pseudogenes. Phylogenetic analyses suggest a classification of the TAS2R genes in five groups that may reflect a specialization in the detection of specific types of bitter chemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.