Chronic hypoxia contributes to pulmonary hypertension through complex mechanisms that include enhanced NADPH oxidase expression and reactive oxygen species (ROS) generation in the lung. Stimulation of peroxisome proliferator-activated receptor g (PPARg) reduces the expression and activity of NADPH oxidase. Therefore, we hypothesized that activating PPARg with rosiglitazone would attenuate chronic hypoxia-induced pulmonary hypertension, in part, through suppressing NADPH oxidase-derived ROS that stimulate proliferative signaling pathways. Male C57Bl/6 mice were exposed to chronic hypoxia (CH, FI O 2 10%) or room air for 3 or 5 weeks. During the last 10 days of exposure, each animal was treated daily by gavage with either the PPARg ligand, rosiglitazone (10 mg/kg/d) or with an equal volume of vehicle. CH increased: (1) right ventricular systolic pressure (RVSP), (2) right ventricle weight, (3) thickness of the walls of small pulmonary vessels, (4) superoxide production and Nox4 expression in the lung, and (5) platelet-derived growth factor receptor b (PDGFRb) expression and activity and reduced phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression. Treatment with rosiglitazone prevented the development of pulmonary hypertension at 3 weeks; reversed established pulmonary hypertension at 5 weeks; and attenuated CH-stimulated Nox4 expression and superoxide production, PDGFRb activation, and reductions in PTEN expression. Rosiglitazone also attenuated hypoxia-induced increases in Nox4 expression in pulmonary endothelial cells in vitro despite hypoxia-induced reductions in PPARg expression. Collectively, these findings indicate that PPARg ligands attenuated hypoxia-induced pulmonary vascular remodeling and hypertension by suppressing oxidative and proliferative signals providing novel insights for mechanisms underlying therapeutic effects of PPARg activation in pulmonary hypertension.
Obstructive sleep apnea, characterized by intermittent periods of hypoxemia, is an independent risk factor for the development of pulmonary hypertension. However, the exact mechanisms of this disorder remain to be defined. Enhanced NADPH oxidase expression and superoxide (O2(-).) generation in the pulmonary vasculature play a critical role in hypoxia-induced pulmonary hypertension. Therefore, the current study explores the hypothesis that chronic intermittent hypoxia (CIH) causes pulmonary hypertension, in part, by increasing NADPH oxidase-derived reactive oxygen species (ROS) that contribute to pulmonary vascular remodeling and hypertension. To test this hypothesis, male C57Bl/6 mice and gp91phox knockout mice were exposed to CIH for 8 hours per day, 5 days per week for 8 weeks. CIH mice were placed in a chamber where the oxygen concentration was cycled between 21% and 10% O2 45 times per hour. Exposure to CIH for 8 weeks increased right ventricular systolic pressure (RVSP), right ventricle (RV):left ventricle (LV) + septum (S) weight ratio, an index of RV hypertrophy, and thickness of the right ventricular anterior wall as measured by echocardiography. CIH exposure also caused pulmonary vascular remodeling as demonstrated by increased muscularization of the distal pulmonary vasculature. CIH-induced pulmonary hypertension was associated with increased lung levels of the NADPH oxidase subunits, Nox4 and p22phox, as well as increased activity of platelet-derived growth factor receptor beta and its associated downstream effector, Akt kinase. These CIH-induced derangements were attenuated in similarly treated gp91phox knockout mice. These findings demonstrate that NADPH oxidase-derived ROS contribute to the development of pulmonary vascular remodeling and hypertension caused by CIH.
Skeletal muscle is often the site of tissue injury due to trauma, disease, developmental defects or surgery. Yet, to date, no effective treatment is available to stimulate the repair of skeletal muscle. We show that the kinetics and extent of muscle regeneration in vivo after trauma are greatly enhanced following systemic administration of curcumin, a pharmacological inhibitor of the transcription factor NF-κB. Biochemical and histological analyses indicate an effect of curcumin after only 4 days of daily intraperitoneal injection compared with controls that require >2 wk to restore normal tissue architecture. Curcumin can act directly on cultured muscle precursor cells to stimulate both cell proliferation and differentiation under appropriate conditions. Other pharmacological and genetic inhibitors of NF-κB also stimulate muscle differentiation in vitro. Inhibition of NF-κB-mediated transcription was confirmed using reporter gene assays. We conclude that NF-κB exerts a role in regulating myogenesis and that modulation of NF-κB activity within muscle tissue is beneficial for muscle repair. The striking effects of curcumin on myogenesis suggest therapeutic applications for treating muscle injuries.
Slow-twitch skeletal muscle atrophies greatly in response to unloading conditions. The cellular mechanisms that contribute to the restoration of muscle mass after atrophy are largely unknown. Here, we show that atrophy of the mouse soleus is associated with a 36% decrease in myonuclear number after 2 wk of hindlimb suspension. Myonuclear number is restored to control values during the 2-wk recovery period in which muscle mass returns to normal, suggesting that muscle precursor cells proliferate and fuse with myofibers. Inhibition of muscle precursor cell proliferation by local gamma-irradiation of the hindlimb completely prevents this increase in myonuclear number. Muscle growth occurs normally during the first week in irradiated muscles, but growth during the second week is inhibited, leading to a 50% attenuation in the restoration of muscle mass. Thus early muscle growth occurs independently of an increase in myonuclear number, whereas later growth requires proliferating muscle precursor cells leading to myonuclear accretion. These results suggest that increasing the proliferative capacity of muscle precursor cells may enhance restoration of muscle mass after atrophy.
Atrophy of skeletal muscle leads to decreases in myofiber size and nuclear number; however, the effects of atrophic conditions on muscle precursor cells (MPC) are largely unknown. MPC lie outside myofibers and represent the main source of additional myonuclei necessary for muscle growth and repair. In the present study, we examined the properties of MPC after hindlimb suspension (HS)-induced atrophy and subsequent recovery of the mouse hindlimb muscles. We demonstrated that the number of MPC in atrophied muscles was decreased. RT-PCR analysis of cells isolated from atrophied muscles indicated that several mRNA characteristic of the myogenic program in MPC were absent. Cells isolated from atrophied muscles failed to properly proliferate and undergo differentiation into multinucleated myotubes. Thus atrophy led to a decrease in MPC and caused dysfunction in those MPC that remained. Upon regrowth of the atrophied muscles, these deleterious effects were reversed. Our data suggest that preventing loss or dysfunction of MPC may be a new pharmacological target during muscle atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.