ABSTRACT:Various physico-chemical techniques were used to investigate the characteristics and heavy metal concentration of soils in some selected waste dumpsites in Port Harcourt. This is because the soils act as vehicles for the permeability of leachates into various levels of aquifers in the environment. The results show that the soils are moderately acidic with a mean pH value of 5.5 for the 1m subsoil and 5.8 for 30cm soil depth in the various dumpsites, while the total organic carbon (TOC) levels show that it was low with 3.41% and 2.90% for depths 30cm and 1m respectively. The cation exchange capacity (CEC) of the soils showed a range of 21.36 -28.79 meq/100g for a depth of 30cm and 20.94 -26.44meq/100g for a depth of 1m soil level across the waste dumpsites. The textural class of the soils was observed to be a mixture of sand, clay and loam in all the sites. Low sand fractions (>40%) was observed for almost all sites except for Elekahia and Eleme roads that had 64.7% and 56.4% respectively. The results of the heavy metal concentration in all the locations of the waste dumpsites were above permissible limits. In this study, the soil did not meet up the moisture requirement for a waste land filling and could therefore be prone to porosity, surface flooding and underground water pollution.
The surface water resources of Bodo/Bonny communities in Rivers State suffers regular pollution of its ecosystem due to increase in crude oil exploration, refining and activities of other industrial establishments operating within the coastal areas of the Ogoniland of the Niger Delta region of Nigeria. This have resulted in the wide scale contamination of most of its creeks, swamps and rivers with hydrocarbons and dispersant products resulting in the alteration of the ecological integrity of fragile aquatic systems, bioaccumulation of chemical contaminants by zoobenthos, sediment enrichment, and smothering or asphyxiation of the organisms in water by oil coating, thereby causing death. These conditions have resulted in serious threat to public health and the ecosystems. The study was aimed at determining the physico-chemical characteristics of Bodo/Bonny coastal waters impacted by crude oil spills and their effect on the marine ecosystems. Surface water was collected from 5 stations (BBW1, BBW2, BBW3, BBW4 and LFPW5) with LFPW5 serving as control. Physico-chemical parameters were investigated following standard methods. The results of the physicochemical characteristics of the various sampling points in the dry season showed that pH, TDS and Electrical conductivity values showed statistically significant differences at P < 0.005. pH was slightly acidic in all sampling locations except for the Link fish pond, the values ranged from 6.20–6.40 which was below DPR Limit of 6.5-8.5 for potable water, TDS recorded 43175–57075 mg/L above DPR permissible Limit of 5000mg/L. Electrical Conductivity (EC) values ranged from 54050 -57050 µS/cm. The Dissolved Oxygen, Biological Oxygen Demand, Turbidity, Chloride recorded in this study varied significantly at P< 0.05. Results of the physicochemical parameters of surface water in the wet season fell within the standard limits except for the conductivity that was above the permissible limits. Comparatively the mean pH value of surface river water with Linked fish pond water which served as the control revealed that the Link fish pond water had the highest pH value of 7.9 than the surface river water samples with a pH of 6.4, TDS (60,200 mg/L), Electrical Conductivity (EC) (µS/cm3) followed a similar pattern with the mean EC value of 55,800 mg/L as against 750mg/L for the Link Fish pond water. Temperature recorded 310C as against 300C for the link fish pond while the Salinity (mg/L) of the surface river water was 31.63 mg/L. Dissolved Oxygen was 2.3 mg/L, Biochemical Oxygen Demand values for the surface river water was 0.49 mg/L while the Link fish pond water had 0.3mg/L. These values obtained in this study shows that the spilled oil in the water could impact on species abundance and biomass by depleting and depriving the fishes from available O2 for survival thus resulting in asphyxiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.