An evolutionary control paradigm for vision-system pose planning for object motion estimation is proposed. The control of the vision system is embedded in the motion estimation process so as to adapt to the dynamic object motion behavior. A Kalman filter is employed as the motion estimator. In the Kalman filter formulation, a noise influence matrix is introduced to model the influence of vision system parameters on the measurement uncertainties. The estimation uncertainties in the Kalman filter formulation are represented in the form of a Riccati equation. This equation describes the estimation uncertainties as an evolution process that is controlled by the vision system parameters. The control task is formulated as an optimization problem. A novel transformation of the vision system parameters is developed to relax the computational complexity of the optimization process. A hybrid genetic algorithm is proposed to search for the optimal vision system pose that is occlusion free. A series of experiments are conducted to evaluate the performance of the proposed object motion estimation model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.