Critical power (CP) and the second ventilatory threshold (VT(2)) are presumed to indicate the power corresponding to maximal lactate steady state (MLSS). The aim of this study was to investigate the use of CP and VT(2) as indicators of MLSS. Eleven male trained subjects [mean (SD) age 23 (2.9) years] performed an incremental test (25 W.min(-1)) to determine maximal oxygen uptake (.VO(2max)), maximal aerobic power (MAP) and the first and second ventilatory thresholds (VT(1) and VT(2)) associated with break points in minute ventilation (.V(E)), carbon dioxide production (.VCO(2)), .V(E)/.VCO(2) and .V(E)/.VO(2) relationships. Exhaustion tests at 90%, 95%, 100% and 110% of .VO(2max), and several 30-min constant work rates were performed in order to determine CP and MLSS, respectively. MAP and .VO(2max) values were 344 (29) W and 53.4 (3.7) ml.min(-1).kg(-1), respectively. CP [278 (22) W; 85.4 (4.8)% .VO(2max)] and VT(2) power output [286 (28) W; 85.3 (5.6)% .VO(2max)] were not significantly different (p=0.96) but were higher (p<0.05) than the MLSS work rate [239 (21) W; 74.3 (4.0)% .VO(2max)] and VT(1) power output [159 (23) W; 52.9 (6.9)% .VO(2max)]. MLSS work rate was significantly correlated (p<0.05) with those noted at VT(1) and VT(2) (r=0.74 and r=0.93, respectively). VT(2) overestimated MLSS by 10.9 (6.3)% .VO(2max), which was significantly higher than VT(1) [+21.4 (5.6)% .VO(2max); p<0.01]. CP calculated from a given range of exhaustion times does not correspond to MLSS.
The purpose of this investigation was to determine whether the concepts of critical swimming speed, critical stroke rate and anaerobic swimming capacity could be used by coaches as a reliable index in order to monitor endurance performances in competitive swimmers. The results of this study conducted with well-trained swimmers showed that the 30-min test velocity (V30) is not different from the critical swimming speed determined from 200- and 400-m tests but is overestimated by 3.2 %. Furthermore, a regression analysis of the number of stroke cycles on time calculated for each swimmer showed a linear relationship (r(2) greater than 0.99 and p less than 0.01). The 30-min stroke rate test (SR30) was not different from the critical stroke rate determined from 200- and 400-m tests after a correction of minus 3.9 %. These data suggest that the slope of this regression line represents the critical stroke rate defined as the maximal stroke rate value, which can theoretically be maintained continuously without exhaustion. Coaches could easily use critical swimming speed combined with critical stroke rate in order not only to set aerobic training loads but also to control the swimming technique during training. Besides, anaerobic swimming capacity (ASC) values defined as the y-intercept of the regression line between distance and time were not correlated (p > 0.05) with the determined distance over which a significant drop in the maximal speed could be noticed on a 25-m test. Thus, ASC does not provide a reliable estimation of the anaerobic capacity.
Exercise termination was not associated with evidence of failure in any physiological system during prolonged exercise performed at MLSS. Thus the biological mechanisms of exercise termination at MLSS were compatible with an integrative homoeostatic control of peripheral physiological systems during exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.