Momentary configurations of long polymers at thermal equilibrium usually deviate from spherical symmetry and can be better described, on average, by a prolate ellipsoid. The asphericity and nature of asphericity (or prolateness) that describe these momentary ellipsoidal shapes of a polymer are determined by specific expressions involving the three principal moments of inertia calculated for configurations of the polymer. Earlier theoretical studies and numerical simulations have established that as the length of the polymer increases, the average shape for the statistical ensemble of random configurations asymptotically approaches a characteristic universal shape that depends on the solvent quality. It has been established, however, that these universal shapes differ for linear, circular, and branched chains. We investigate here the effect of knotting on the shape of cyclic polymers modeled as random isosegmental polygons. We observe that random polygons forming different knot types reach asymptotic shapes that are distinct from the ensemble average shape. For the same chain length, more complex knots are, on average, more spherical than less complex knots.
Previous work on radius of gyration and average crossing number has demonstrated that polymers with fixed topology show a different scaling behavior with respect to these characteristics than polymers with unrestricted topology. Using numerical simulations, we show here that the difference in the scaling behavior between polymers with restricted and unrestricted topology also applies to the total curvature and total torsion. For each knot type, the equilibrium length with respect to a given spatial characteristic is the number of edges at which the value of the characteristic is the same as the average for all polygons. This number appears to be correlated to physical properties of macromolecules, for example gel mobility as measured by the separation between distinct knot types. We also find that, on average, closed polymers require slightly more total curvature and slightly less total torsion than open polymers with the corresponding number of monomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.