An 8-plex version of an isobaric reagent for the quantitation of proteins using shotgun methods is presented. The 8-plex version of the reagent relies on amine-labeling chemistry of peptides similar to 4-plex reagents. MS/MS reporter ions at 113, 114, 115, 116, 117, 118, 119, and 121 m/z are used to quantify protein expression. This technology which was first applied to a test mixture consisting of eight proteins and resulted in accurate quantitation, has the potential to increase throughput of analysis for quantitative shotgun proteomics experiments when compared to 2- and 4-plex methods. The technology was subsequently applied to a longitudinal study of cerebrospinal fluid (CSF) proteins from subjects undergoing intravenous Ig treatment for Alzheimer's disease. Results from this study identify a number of protein expression changes that occur in CSF after 3 and 6 months of treatment compared to a baseline and compared to a drug washout period. A visualization tool was developed for this dataset and is presented. The tool can aid in the identification of key peptides and measurements. One conclusion aided by the visualization tool is that there are differences in considering peptide-based observations versus protein-based observations from quantitative shotgun proteomics studies.
A simple and rapid "one-pot" methylation method to esterify sialic acids and construct a permanent charge was developed for N-linked glycan analysis, which combined complete nonspecific proteolytic digestion and methylation. A mixture of Asn-glycans prepared from Pronase E digestion of the glycoprotein was passed through a cation-exchange column to convert carboxylic acids to the Na+ form before being methylated with methyl iodide. Derivatives could be easily purified with a hydrophilic affinity chromatography cartridge. Mass spectrometry analysis was performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and MALDI-TOF/TOF. The mass spectrometric data indicated that carboxylic acids were methylated in addition to the formation of a quaternary ammonium in the amino group of asparagine residues. Three model glycoproteins, including ribonuclease B, ovalbumin, and transferrin, were employed to demonstrate the merits of this technique. Results showed that the stabilization of sialic acid was achieved in addition to the formation of a permanent charge. Compared to the analysis of underivatized N-glycans, detection sensitivity improved approximately 10-fold. The new technique was further evaluated with glycan profiling of serum transferrin and proved to be a sensitive method for the characterizing protein glycosylation.
New and improved strategies are eagerly sought for the rapid identification of microorganisms, particularly in mixtures. Mass spectrometry remains a powerful tool for this purpose. Small acid-soluble proteins (SASPs), which are relatively abundant in Bacillus spores, represent potential biomarkers for species characterization. Despite sharing extensive sequence homology, these proteins differ sufficiently in sequence for discrimination between species. This work focuses on the differences in sequence between SASPs from various Bacillus species. Compilation of SASP sequences from protein database searches, followed by in silico trypsin digestion and analysis of the resulting fragments, identified several species-specific peptides that could be targeted for analysis using mass spectrometry. This strategy was tested and found to be successful in the characterization of Bacillus spores both from individual species and in mixtures. Analysis was performed using an ion trap mass spectrometer with an atmospheric pressure MALDI source. This instrumentation offers the advantage of increased speed of analysis and accurate precursor ion selection for tandem mass spectrometric analysis compared with vacuum matrix-assisted laser desorption/ionization and time-of-flight instruments. The identification and targeting of species-specific peptides using this type of instrumentation offers a rapid, efficient strategy for the identification of Bacillus spores and can potentially be applied to different microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.