Developmental dyslexia affects almost 10% of school-aged children and represents a significant public health problem. Its etiology is unknown. The consistent presence of phonological difficulties combined with an inability to manipulate language sounds and the grapheme–phoneme conversion is widely acknowledged. Numerous scientific studies have also documented the presence of eye movement anomalies and deficits of perception of low contrast, low spatial frequency, and high frequency temporal visual information in dyslexics. Anomalies of visual attention with short visual attention spans have also been demonstrated in a large number of cases. Spatial orientation is also affected in dyslexics who manifest a preference for spatial attention to the right. This asymmetry may be so pronounced that it leads to a veritable neglect of space on the left side. The evaluation of treatments proposed to dyslexics whether speech or oriented towards the visual anomalies remains fragmentary. The advent of new explanatory theories, notably cerebellar, magnocellular, or proprioceptive, is an incentive for ophthalmologists to enter the world of multimodal cognition given the importance of the eye’s visual input.
Children with developmental dyslexia suffer from delayed reading capabilities and may also exhibit attentional and sensori-motor deficits. The objective of this study was twofold. First, we aimed at investigating whether integration of proprioceptive signals in balance control was more impaired in dyslexic children when the attentional demand was varied. Secondly, we checked whether this effect was reduced significantly by using a specific treatment to improve eye control deficits and certain postural signs that are often linked to dyslexia (Quercia et al. in J Fr Ophtalmol 28:713-723, 2005, J Fr Ophtalmol 30:380-89, 2007). Thirty dyslexic and 51 treated dyslexic children (> 3 months of treatment) were compared with 42 non-dyslexic children in several conditions (mean age: 136.2 ± 23.6, 132.2 ± 18.7 and 140.2 ± 25 months, respectively). Co-vibration of ankle muscles was effected in order to alter proprioceptive information originating from the ankle. In two vibration conditions, ankle muscles were either not vibrated or vibrated at 85 Hz without illusion of any movement. These two vibration conditions were combined with two attentional conditions. In the first such condition, children maintained balance while merely fixing their gaze on a point in front of them. In the second condition, they had to look for smaller or larger stars in a panel showing forty of each kind. Balance was assessed by means of a force plate. Results indicated that the mean velocity (i.e. the total length) of the center of pressure (CoP) displacement in the 85-Hz vibration condition increased significantly more (compared with no vibration) in the dyslexic and the treated dyslexic groups than in the control group, irrespective of the attention task. Interestingly, in the condition without vibration, the attentional performance of treated children was similar to that of the control group, whereas the attentional performance of the untreated dyslexic children was significantly impaired. Altogether, these results suggest that integration of proprioceptive signals in balance control and attentional capacity are impaired in dyslexic children. However, attention capacity during the control of stance could be improved significantly.
This study compared the visuospatial asymmetries in children with dyslexia and healthy children by using the manual line bisection task, and investigated the processing of spatial context with a 'local' cueing paradigm consisting of geometric symbols placed on the extremities of the lines. The performance between healthy children (leftward bias) and children with dyslexia (rightward bias) was significantly different. Furthermore, the bisection mark was shifted in the direction of the unilaterally cued extremities in all children. As children with dyslexia showed a rightward bias in their spatial representation, which did not interfere with local context processing, we proposed the term 'inverse pseudoneglect' to depict their behaviour in line bisection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.