Magnetic resonance imaging (MRI) was performed on 50 dogs with intracranial neoplasia. The following tumor features were assessed: axial origin, location, shape, growth pattern, MRI signal intensity, evidence for edema, and paramagnetic contrast enhancement. Histologic diagnoses included 5 intracranially invading nasal tumors, 7 pituitary tumors, 22 meningiomas, 6 choroid plexus tumors, 7 astrocytomas, 1 ependymoma, and 2 oligodendrogliomas. Axial origin, site, shape, and growth pattern were important diagnostic characteristics for tumor type. Signal intensity Magnetic resonance imaging (MRI) is the preferred imaging method for human beings with central nervous system disease, and it has become increasingly available and affordable for use in veterinary medicine. The MRI features of canine neurologic disease have been described, but histologic diagnoses have not been available in all instance^.'.^ In this study, MRI scans of 50 histologically diagnosed canine intracranial tumors were evaluated retrospectively to identify distinguishing characteristics. Materials and Methods Selection CriteriaDogs with clinical signs of intracranial disease were referred to Washington State University Veterinary Teaching Hospital. The dogs were evaluated using a standard diagnostic protocol as part of a phase I clinical trial for boron neutron capture therapy, which was conducted with approval from the Animal Care and Use Committee.4.' Most dogs in the study had been treated with corticosteroids at the time of imaging. All patients had a complete MRI brain scan and histologic diagnosis of intracranial tumor. Patients with potential metastatic intracranial neoplasia were not included in the study. From the Magnetic Resonance Scan ProtocolDetails of the MRI protocol have been described previously.' Briefly, MRI was performed with a 1.5 T magnet (General Electric Signa, Milwaukee, WI). Under general anesthesia, dogs were placed in sternal recumbency, and a sagittal localizer series (time of relaxation or TR = 400 msec/time to echo or TE = 20 msec) was performed to delineate subsequent transverse images. Transverse proton density-weighted images (PDWI) and TZ-weighted images (TZWI) were obtained with a multiple spin echo series at TR = 2000 msec with TE = 20 to 30 and 80 to 90 msec. Transverse and sagittal precontrast and postcontrast T1-weighted images (T1 WI) were performed using TR = 800 msec and TE = 20 msec. Three to 5 mm slices with an interslice gap of 0 to 1.5 mm were obtained from the foramen magnum rostrally through the cribriform plate.
Magnetic resonance (MR) imaging abnormalities in horses with lameness localized to the proximal metacarpal or metatarsal region have not been described. To accomplish that, the medical records of 45 horses evaluated with MR imaging that had lameness localized to either the proximal metacarpal or metatarsal region were reviewed. Abnormalities observed in the proximal suspensory ligament or the accessory ligament of the deep digital flexor tendon included abnormal high signal, enlargement, or alteration in shape. Twenty-three horses had proximal suspensory ligament desmitis (13 hindlimb, 10 forelimb). Sixteen horses had desmitis of the accessory ligament of the deep digital flexor tendon. One horse had desmitis of the proximal suspensory ligament and the accessory ligament of the deep digital flexor tendon on the same limb and one horse had desmitis of the proximal suspensory ligament on one forelimb and desmitis of the accessory ligament of the deep digital flexor tendon on the other forelimb. Four horses did not have abnormalities in the proximal suspensory ligament or accessory ligament of the deep digital flexor tendon. Eighty percent of horses with forelimb proximal suspensory ligament desmitis and 69% of horses with hindlimb proximal suspensory ligament desmitis returned to their intended use. Sixty-three percent of horses with desmitis of the accessory ligament of the deep digital flexor tendon were able to return to their intended use. MR imaging is a valuable diagnostic modality that allows diagnosis of injury in horses with lameness localized to the proximal metacarpal and metatarsal regions. The ability to accurately diagnose the source of lameness is important in selecting treatment that will maximize the chance to return to performance.
Twenty-one dogs with confirmed tumors of the spinal cord or paraspinal tissues were imaged with magnetic resonance (MR) imaging. Anatomical location, location in relation to the dura and the medulla (spinal cord), and bone infiltration were assessed on the MR images and compared to findings at surgery or necropsy. Localization of tumors in the intradural-extramedullary compartment was not always possible. Bone infiltration was correctly assessed in all but one dog, and the anatomical locations involved were accurately determined in all dogs. Sagittal T2-weighted images were helpful to determine the anatomical location. Transverse T1-weighted images pre and post Gd-DTPA administration were helpful for additional localization and definition of tumor extension.
Injury to the oblique and straight distal sesamoidean ligaments is becoming recognized as a more common cause of lameness in horses than was previously thought. The purpose of this study was to review the magnetic resonance (MR) imaging findings of 27 horses affected with desmitis of the oblique and/or straight distal sesamoidean ligament and determine long-term prognosis for horses with this diagnosis. Imaging was performed with horses in right lateral recumbency in a high-field 1 T magnet. All horses had lameness localized to the digit or metacarpophalangeal/metatarsophalangeal joint region with diagnostic local anesthetic blocks. Ten horses had forelimb lameness and 17 horses had hind limb lameness. MR imaging revealed abnormalities in the oblique distal sesamoidean ligaments in 18 horses, in the straight distal sesamoidean ligament in three horses, and in both the oblique and straight distal sesamoidean ligament in six horses. Treatment consisted of a 6-month rest and rehabilitation program in all horses. The digital flexor tendon sheath was injected with methylprednisolone acetate and hyaluronic acid in 22 horses to decrease inflammation in the injured ligaments before starting the rest and rehabilitation program. Two horses had ligament splitting performed, one in the oblique distal sesamoidean ligament and one in the straight distal sesamoidean ligament. MR imaging is an effective method for diagnosing injury to the oblique and straight distal sesamoidean ligaments in horses. Treatment, primarily a 6-month rest and rehabilitation program, allowed 76% of the horses to successfully resume performance.
Seventy-two horses with recent onset of navicular syndrome and normal radiographs were assessed. Horses underwent magnetic resonance (MR) imaging of both front feet. All abnormalities were characterized and the most severe abnormality identified, if possible. Abnormal signal intensity in the navicular bone was the most severe abnormality in 24 (33%) horses. Pathologic change in the deep digital flexor tendon was the most severe abnormality in 13 (18%) horses. Pathologic change in the collateral sesamoidean ligament was the most severe abnormality in 11 (15%) horses. Pathologic change in the distal sesamoidean impar ligament was the most severe abnormality in seven (10%) horses. Multiple abnormalities were observed in 13 (18%) horses in which an abnormality that was more severe than the others could not be determined. Abnormalities were not observed in the navicular bone or its supporting soft tissues in four (5%) horses. Fifty-six horses had abnormalities that were most severe in one limb; in 52 (93%) horses, the most severe abnormalities were in the foot of the most lame limb. In 7% (4/56) of horses, the most severe findings were in the opposite limb, and in 16 horses, the findings on both limbs were similar. MR imaging is a useful technique for evaluating horses with navicular syndrome and can differentiate between multiple abnormalities. This provides a more specific diagnosis which affects further treatment of the horse. Pathologic changes in different locations in the foot can cause similar clinical signs that, before MR imaging, were categorized as one syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.