Background Mobile devices such as smartphones, tablets, and laptop computers enable users to search for information and communicate with others at any place and any time. Such devices are increasingly being used at universities for teaching and learning. The use of mobile devices by students depends, among others, on the individual media literacy level and the curricular framework. Objective The objective of this study was to explore whether there were differences in media use in students from various curricula at the Faculty of Health, Witten/Herdecke University. Methods During the 2015-16 winter term, a survey was conducted at the Faculty of Health, Witten/Herdecke University, in which a total of 705 students (out of 1091 students; response rate: 705/1091, 64.61%) from 4 schools participated voluntarily: medicine (346/598), dentistry (171/204), psychology (142/243), and nursing science (46/46). The questionnaire developed for the study included 132 questions on 4 topics: (1) electronic and mobile devices (19 questions), (2) communication and organization of learning (45 questions), (3) apps/programs/websites/media (34 questions), and (4) media literacy (34 questions). The questionnaire was distributed and anonymously completed during in-class courses. Results Students from all 4 schools had at least two electronic devices, with smartphones (97.4%, 687/705) and laptops (94.8%, 669/705) being the most common ones. Students agreed that electronic devices enabled them to effectively structure the learning process (mean 3.16, SD 0.62) and shared the opinion that university teaching should include imparting media literacy (mean 2.84, SD 0.84). Electronic device ownership was the highest among medical students (mean 2.68, SD 0.86) and medical students were the only ones to use a tutorial (36.1%, 125/346). Dental students most widely used text messages (mean 3.41, SD 0.49) and social media (mean 2.57, SD 1.10) to organize learning. Psychology students considered mobile devices to be most ineffective (mean 2.81, SD 0.83). Nursing science students used emails (mean 3.47, SD 0.73) and desktop computers (39%, 18/46) most widely. Conclusions The results show that almost all students use electronic learning (e-learning) tools. At the same time, different profiles for different degree programs become apparent, which are to be attributed to not only the varying curricula and courses but also to the life circumstances of different age groups. Universities should, therefore, pay attention to the diverse user patterns and media literacy levels of students when planning courses to enable successful use of e-learning methods.
Background Nonadherence to medication is a driver of morbidity and mortality, and complex medication regimens in patients with chronic diseases foster the problem. Digital technology might help, but despite numerous solutions being developed, none are currently widely used, and acceptance rates remain low, especially among the elderly. Objective This study aimed to better understand and operationalize how new digital solutions can be evaluated. Particularly, the goal was to identify factors that help digital approaches targeting adherence to become more widely accepted. Methods A qualitative study using a conceptual grounded theory approach was conducted. We included patients aged 65 years and older who routinely took new oral anticoagulants. To generate theses about the digital competencies of the target group with daily medication intake, face-to-face interviews were conducted, recorded, and anonymized. After coding the interviews, categories were generated, discussed, and combined with several theses until saturation of the statements was reached. Results The methodological approach led to the finding that after interviews in 20 of 77 potentially available patients, a saturation of statements was reached. The average patient’s age was 75 years, and 50% (10/20) of the subjects were female. The data identified five main coding categories—Diseases and medicine, Technology, Autonomy, Patient narrative, and Attitude toward technologies—each including positive and negative subcategories. Main categories and subcategories were summarized as Adherence Radar, which can be considered as a framework to assess the potential of adherence solutions in the process of prototyping and can be applied to all adherence tools in a holistic manner. Conclusions The Adherence Radar can be used to increase the acceptance rate of digital solutions targeting adherence. For a patient-centric design, an app should be adapted to the individual patient’s needs. According to our results, this application should be based on gender and educational background as well as the individual physician-patient relationship. If used in a proper, individualized manner, digital adherence solutions could become a new cornerstone for the treatment of chronically ill individuals.
Background Interest in digital technologies in the health care sector is growing and can be a way to reduce the burden on professional caregivers while helping people to become more independent. Social robots are regarded as a special form of technology that can be usefully applied in professional caregiving with the potential to focus on interpersonal contact. While implementation is progressing slowly, a debate on the concepts and applications of social robots in future care is necessary. Objective In addition to existing studies with a focus on societal attitudes toward social robots, there is a need to understand the views of professional caregivers and patients. This study used desired future scenarios to collate the perspectives of experts and analyze the significance for developing the place of social robots in care. Methods In February 2020, an expert workshop was held with 88 participants (health professionals and educators; [PhD] students of medicine, health care, professional care, and technology; patient advocates; software developers; government representatives; and research fellows) from Austria, Germany, and Switzerland. Using the scenario methodology, the possibilities of analog professional care (Analog Care), fully robotic professional care (Robotic Care), teams of robots and professional caregivers (Deep Care), and professional caregivers supported by robots (Smart Care) were discussed. The scenarios were used as a stimulus for the development of ideas about future professional caregiving. The discussion was evaluated using qualitative content analysis. Results The majority of the experts were in favor of care in which people are supported by technology (Deep Care) and developed similar scenarios with a focus on dignity-centeredness. The discussions then focused on the steps necessary for its implementation, highlighting a strong need for the development of eHealth competence in society, a change in the training of professional caregivers, and cross-sectoral concepts. The experts also saw user acceptance as crucial to the use of robotics. This involves the acceptance of both professional caregivers and care recipients. Conclusions The literature review and subsequent workshop revealed how decision-making about the value of social robots depends on personal characteristics related to experience and values. There is therefore a strong need to recognize individual perspectives of care before social robots become an integrated part of care in the future.
BACKGROUND Nonadherence to medication is a driver of morbidity and mortality, and complex medication regimens in patients with chronic diseases foster the problem. Digital technology might help, but despite numerous solutions being developed, none are currently widely used, and acceptance rates remain low, especially among the elderly. OBJECTIVE This study aimed to better understand and operationalize how new digital solutions can be evaluated. Particularly, the goal was to identify factors that help digital approaches targeting adherence to become more widely accepted. METHODS A qualitative study using a conceptual grounded theory approach was conducted. We included patients aged 65 years and older who routinely took new oral anticoagulants. To generate theses about the digital competencies of the target group with daily medication intake, face-to-face interviews were conducted, recorded, and anonymized. After coding the interviews, categories were generated, discussed, and combined with several theses until saturation of the statements was reached. RESULTS The methodological approach led to the finding that after interviews in 20 of 77 potentially available patients, a saturation of statements was reached. The average patient’s age was 75 years, and 50% (10/20) of the subjects were female. The data identified five main coding categories—Diseases and medicine, Technology, Autonomy, Patient narrative, and Attitude toward technologies—each including positive and negative subcategories. Main categories and subcategories were summarized as Adherence Radar, which can be considered as a framework to assess the potential of adherence solutions in the process of prototyping and can be applied to all adherence tools in a holistic manner. CONCLUSIONS The Adherence Radar can be used to increase the acceptance rate of digital solutions targeting adherence. For a patient-centric design, an app should be adapted to the individual patient’s needs. According to our results, this application should be based on gender and educational background as well as the individual physician-patient relationship. If used in a proper, individualized manner, digital adherence solutions could become a new cornerstone for the treatment of chronically ill individuals.
BACKGROUND Mobile devices such as smartphones, tablets, and laptop computers enable users to search for information and communicate with others at any place and any time. Such devices are increasingly being used at universities for teaching and learning. The use of mobile devices by students depends, among others, on the individual media literacy level and the curricular framework. OBJECTIVE The objective of this study was to explore whether there were differences in media use in students from various curricula at the Faculty of Health, Witten/Herdecke University. METHODS During the 2015-16 winter term, a survey was conducted at the Faculty of Health, Witten/Herdecke University, in which a total of 705 students (out of 1091 students; response rate: 705/1091, 64.61%) from 4 schools participated voluntarily: medicine (346/598), dentistry (171/204), psychology (142/243), and nursing science (46/46). The questionnaire developed for the study included 132 questions on 4 topics: (1) electronic and mobile devices (19 questions), (2) communication and organization of learning (45 questions), (3) apps/programs/websites/media (34 questions), and (4) media literacy (34 questions). The questionnaire was distributed and anonymously completed during in-class courses. RESULTS Students from all 4 schools had at least two electronic devices, with smartphones (97.4%, 687/705) and laptops (94.8%, 669/705) being the most common ones. Students agreed that electronic devices enabled them to effectively structure the learning process (mean 3.16, SD 0.62) and shared the opinion that university teaching should include imparting media literacy (mean 2.84, SD 0.84). Electronic device ownership was the highest among medical students (mean 2.68, SD 0.86) and medical students were the only ones to use a tutorial (36.1%, 125/346). Dental students most widely used text messages (mean 3.41, SD 0.49) and social media (mean 2.57, SD 1.10) to organize learning. Psychology students considered mobile devices to be most ineffective (mean 2.81, SD 0.83). Nursing science students used emails (mean 3.47, SD 0.73) and desktop computers (39%, 18/46) most widely. CONCLUSIONS The results show that almost all students use electronic learning (e-learning) tools. At the same time, different profiles for different degree programs become apparent, which are to be attributed to not only the varying curricula and courses but also to the life circumstances of different age groups. Universities should, therefore, pay attention to the diverse user patterns and media literacy levels of students when planning courses to enable successful use of e-learning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.