SummaryBackgroundUnderstanding potential trajectories in health and drivers of health is crucial to guiding long-term investments and policy implementation. Past work on forecasting has provided an incomplete landscape of future health scenarios, highlighting a need for a more robust modelling platform from which policy options and potential health trajectories can be assessed. This study provides a novel approach to modelling life expectancy, all-cause mortality and cause of death forecasts —and alternative future scenarios—for 250 causes of death from 2016 to 2040 in 195 countries and territories.MethodsWe modelled 250 causes and cause groups organised by the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) hierarchical cause structure, using GBD 2016 estimates from 1990–2016, to generate predictions for 2017–40. Our modelling framework used data from the GBD 2016 study to systematically account for the relationships between risk factors and health outcomes for 79 independent drivers of health. We developed a three-component model of cause-specific mortality: a component due to changes in risk factors and select interventions; the underlying mortality rate for each cause that is a function of income per capita, educational attainment, and total fertility rate under 25 years and time; and an autoregressive integrated moving average model for unexplained changes correlated with time. We assessed the performance by fitting models with data from 1990–2006 and using these to forecast for 2007–16. Our final model used for generating forecasts and alternative scenarios was fitted to data from 1990–2016. We used this model for 195 countries and territories to generate a reference scenario or forecast through 2040 for each measure by location. Additionally, we generated better health and worse health scenarios based on the 85th and 15th percentiles, respectively, of annualised rates of change across location-years for all the GBD risk factors, income per person, educational attainment, select intervention coverage, and total fertility rate under 25 years in the past. We used the model to generate all-cause age-sex specific mortality, life expectancy, and years of life lost (YLLs) for 250 causes. Scenarios for fertility were also generated and used in a cohort component model to generate population scenarios. For each reference forecast, better health, and worse health scenarios, we generated estimates of mortality and YLLs attributable to each risk factor in the future.FindingsGlobally, most independent drivers of health were forecast to improve by 2040, but 36 were forecast to worsen. As shown by the better health scenarios, greater progress might be possible, yet for some drivers such as high body-mass index (BMI), their toll will rise in the absence of intervention. We forecasted global life expectancy to increase by 4·4 years (95% UI 2·2 to 6·4) for men and 4·4 years (2·1 to 6·4) for women by 2040, but based on better and worse health scenarios, trajectories could range from a gain of 7·8 years (5·9...
Summary Background The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030. Methods We used standardised GBD 2016 methods to measure 37 health-related indicators from 1990 to 2016, an increase of four indicators since GBD 2015. We substantially revised the universal health coverage (UHC) measure, which focuses on coverage of essential health services, to also represent personal health-care access and quality for several non-communicable diseases. We transformed each indicator on a scale of 0–100, with 0 as the 2·5th percentile estimated between 1990 and 2030, and 100 as the 97·5th percentile during that time. An index representing all 37 health-related SDG indicators was constructed by taking the geometric mean of scaled indicators by target. On the basis of past trends, we produced projections of indicator values, using a weighted average of the indicator and country-specific annualised rates of change from 1990 to 2016 with weights for each annual rate of change based on out-of-sample validity. 24 of the currently measured health-related SDG indicators have defined SDG targets, against which we assessed attainment. Findings Globally, the median health-related SDG index was 56·7 (IQR 31·9–66·8) in 2016 and country-level performance markedly varied, with Singapore (86·8, 95% uncertainty interval 84·6–88·9), Iceland (86·0, 84·1–87·6), and Sweden (85·6, 81·8–87·8) having the highest levels in 2016 and Afghanistan (10·9, 9·6–11·9), the Central African Republic (11·0, 8·8–13·8), and Somalia (11·3, 9·5–13·1) recording the lowest. Between 2000 and 2016, notable improvements in the UHC index were achieved by several countries, including Cambodia, Rwanda, Equatorial Guinea, Laos, Turkey, and China; however, a number of countries, such as Lesotho and the Central African Republic, but also high-income countries, such as the USA, showed minimal gains. Based on projections of past trends, the median number of SDG targets attained in 2030 was five (IQR 2–8) of the 24 defined targets currently measured. Globally, projected target attainment considerably varied by SDG indicator, ranging from more than 60% of countries projected to reach targets for under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria, to less than 5% of countries projected to achieve targets linked to 11 indicator targets, including those for childhood overweight, tuberculosis, and road injury mortality. For several of the health-related SDGs, meeting defined targets hinges upon substantially faster progress than what most countries have achieved in the past. Interpret...
Purpose Four measures of children’s developing robustness of phonological contrast were compared to see how they correlated with age, with vocabulary size, and with adult listeners’ “correctness” ratings. Method Word-initial sibilant fricative productions from 81 two- to five-year-old children and 20 adults were phonetically transcribed and acoustically analyzed. Four measures of robustness of contrast were calculated for each speaker based on the centroid frequency measured from each fricative token. Productions from different children that were transcribed as correct were then used as stimuli in a perception experiment in which adult listeners rated the goodness of each production. Results Results showed that the degree of category overlap, quantified as the percentage of a child’s productions whose category could be correctly predicted from the output of a mixed effects logistic regression model, was the measure that correlated best with listeners’ goodness judgments. Conclusions Even when children’s productions have been transcribed as “correct”, adult listeners are sensitive to within-category variation quantified by the child’s degree of category overlap. Further research is needed to explore the relationship between the age of a child and adults’ sensitivity to different types of within-category variation in children’s speech.
Previous research has extensively investigated the spectral properties of sibilant fricatives with little consideration to how these properties vary over time. To investigate such spectro-temporal variation, productions of English /s/ and /S/ and of Japanese /s/ and /ˆ/ in word-initial, prevocalic position were elicited from adult native speakers. The spectral dynamics of these productions were analyzed in terms of a psychoacoustic measure of peak frequency: "peak ERB N number." Peak ERB N number was computed at 17 evenly spaced points across each fricative production. The resulting peak ERB N number trajectories were analyzed with orthogonal polynomial growth-curve models, to determine how peak frequency varied temporally within each fricative. Three analyses compared (1) the English sibilants to each other, (2) the Japanese sibilants to each other, and (3) English /s/ to Japanese /s/. The results indicated that, in both English and Japanese, the sibilant fricatives differ acoustically in terms of both static (i.e., overall level) and dynamic (i.e., shape) aspects of the peak ERB N number trajectories. Furthermore, English /s/ and Japanese /s/ exhibited language-specific differences in the shape, but not overall level, of peak ERB N number trajectories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.