Background
Considerable evidence indicates that a signaling crosstalk between the brain and periphery plays important roles in neurological disorders, and that both acute and chronic peripheral inflammation can produce brain changes leading to cognitive impairments. Recent clinical and epidemiological studies have revealed an increased risk of cognitive impairment and dementia in individuals with impaired pulmonary function. However, the mechanistic underpinnings of this association remain unknown. Exposure to SiO2 (silica) particles triggers lung inflammation, including infiltration by peripheral immune cells and upregulation of pro-inflammatory cytokines. We here utilized a mouse model of lung silicosis to investigate the crosstalk between lung inflammation and memory.
Methods
Silicosis was induced by intratracheal administration of a single dose of 2.5 mg SiO2/kg in mice. Molecular and behavioral measurements were conducted 24 h and 15 days after silica administration. Lung and hippocampal inflammation were investigated by histological analysis and by determination of pro-inflammatory cytokines. Hippocampal synapse damage, amyloid-β (Aβ) peptide content and phosphorylation of Akt, a proxy of hippocampal insulin signaling, were investigated by Western blotting and ELISA. Memory was assessed using the open field and novel object recognition tests.
Results
Administration of silica induced alveolar collapse, lung infiltration by polymorphonuclear (PMN) cells, and increased lung pro-inflammatory cytokines. Lung inflammation was followed by upregulation of hippocampal pro-inflammatory cytokines, synapse damage, accumulation of the Aβ peptide, and memory impairment in mice.
Conclusion
The current study identified a crosstalk between lung and brain inflammatory responses leading to hippocampal synapse damage and memory impairment after exposure to a single low dose of silica in mice.
Data suggest the lack of efficacy of orally administered bupropion, desipramine, fluoxetine in the FST in Swiss mice. High variability, due to high and low immobility mice, may explain the limited effects of the treatments.
Psychopharmacology used animal models to study the effects of drugs on brain and behaviour. The repeated forced-swimming test (rFST), which is used to assess the gradual effects of antidepressants on rat behaviour, was standardized only in males. Because of the known sex differences in rats, experimental conditions standardized for males may not apply to female rats. Therefore, the present work aimed to standardize experimental and housing conditions for the rFST in female rats. Young or adult Wistar female rats were housed in standard or enriched environments for different experimental periods. As assessed in tested and nontested females, all rats had reached sexual maturity by the time behavioural testing occurred. The rFST consisted of a 15-min session of forced swimming (pretest), followed by 5-min sessions at 1 (test), 7 (retest 1) and 14 days (retest 2) later. The oestrous cycle was registered immediately before every behavioural session. All sessions were videotaped for further analysis. The immobility time of female rats remained similar over the different sessions of rFST independent of the age, the phase of the oestrous cycle or the housing conditions. These data indicate that rFST in female Wistar rats may be reproducible in different experimental conditions.
Due to the prevalence of depression in women, female rats may be a better models for antidepressant research than males. In male rats, fluoxetine inhibited the serotonin (5‐hydroxytryptamine, 5‐HT) transporter (SERT) which is reducing the immobility time in the repeated forced swimming test (rFST). The performance of female rats in this test is unknown. In this study, responses of male and female rats in the rFST under chronic treatment with fluoxetine and the function of SERT in their brains were examined. Wistar rats received oral fluoxetine (females: 0, 1, 2.5, or 5 mg kg‐1 day‐1; males: 0 or 2.5 mg kg‐1 day‐1; in sucrose 10%, 1.5 ml/rat) 1 hr before the test daily for 12 days over the course of the rFST. rFST consisted of a 15 min pretest followed by 5 min sessions of swimming at 1 (test), 7 (retest 1), and 14 (retest 2) days later. SERT functioning was assessed by ex vivo assays of the frontal cortex and hippocampus of rats. Fluoxetine reduced immobility time of males in the rFST while it failed to do so in females. In vitro treatment with fluoxetine inhibited the uptake of 5‐HT of both sexes similarly, while in vivo chronic administration of fluoxetine failed to do so. In summary, rats responded to the chronic treatment with fluoxetine in a sexually dimorphic fashion during the rFST despite the functioning of SERT in their brains remaining equally unchanged. Hence, our data suggest that sexually dimorphic responses to fluoxetine in rFST may be unrelated to the function of SERT in rat brains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.