Background Research has questioned the safety of delaying or withholding antibiotics for suspected urinary tract infection (UTI) in older patients. We evaluated the association between antibiotic treatment for lower UTI and risk of bloodstream infection (BSI) in adults aged �65 years in primary care. Methods and findings We analyzed primary care records from patients aged �65 years in England with community-onset UTI using the Clinical Practice Research Datalink (2007-2015) linked to Hospital Episode Statistics and census data. The primary outcome was BSI within 60 days, comparing patients treated immediately with antibiotics and those not treated immediately. Crude and adjusted associations between exposure and outcome were estimated using generalized estimating equations. A total of 147,334 patients were included representing 280,462 episodes of lower UTI. BSI occurred in 0.4% (1,025/244,963) of UTI episodes with immediate antibiotics versus 0.6% (228/35,499) of episodes without immediate antibiotics. After adjusting for patient demographics, year of consultation, comorbidities, smoking status, recent hospitalizations, recent accident and emergency (A&E) attendances, recent antibiotic prescribing, and home visits, the odds of BSI were equivalent in patients who were not treated with antibiotics immediately and those who were treated on the date of their UTI consultation (adjusted odds ratio [aOR] 1.13, 95% CI 0.97-1.32, p-value = 0.105). Delaying or withholding antibiotics was associated with increased odds of death in the subsequent 60 days (aOR 1.17, 95% CI 1.09-1.26, p-value < 0.001), but there was limited evidence that increased deaths were attributable to urinary-source BSI.
Background: Suspected urinary tract infection (UTI) syndromes are a common reason for empirical antibiotics to be prescribed in the Emergency Department (ED), but differentiating UTI from other conditions with a similar presentation is challenging. We investigated how often an ED diagnosis of UTI is confirmed clinically/ microbiologically, and described conditions which present as UTI syndromes. Methods: Observational study using electronic health records from patients who attended the ED with suspected UTI and had a urine sample submitted for culture. We compared the ED diagnosis to diagnosis at discharge from hospital (ICD-10 codes), and estimated the proportion of cases with clinical/microbiological evidence of UTI. Results: Two hundred eighty nine patients had an ED diagnosis of UTI syndrome comprising: lower UTI (191), pyelonephritis (56) and urosepsis (42). In patients admitted to hospital with an ED diagnosis of lower UTI, pyelonephritis or urosepsis, clinical/microbiological evidence of UTI was lacking in 61/103, 33/54 and 31/42 cases respectively. The ED diagnosis was concordant with the main reason for admission in less than 40% of patients with UTI syndromes, and antibiotics were stopped within 72 h in 37/161 patients. Conclusions: Clinical/microbiological evidence of UTI was lacking in 60-70% of patients, suggesting scope to revise empirical prescribing decisions for UTI syndromes in light of microbial culture and clinical progression.
Background Hospital antimicrobial stewardship (AMS) programmes are multidisciplinary initiatives to optimize antimicrobial use. Most hospitals depend on time-consuming manual audits to monitor clinicians’ prescribing. But much of the information needed could be sourced from electronic health records (EHRs). Objectives To develop an informatics methodology to analyse characteristics of hospital AMS practice using routine electronic prescribing and laboratory records. Methods Feasibility study using electronic prescribing, laboratory and clinical coding records from adult patients admitted to six specialities at Queen Elizabeth Hospital, Birmingham, UK (September 2017–August 2018). The study involved: (i) a review of AMS standards of care; (ii) their translation into concepts measurable from commonly available EHRs; and (iii) a pilot application in an EHR cohort study (n = 61679 admissions). Results We developed data modelling methods to characterize antimicrobial use (antimicrobial therapy episode linkage methods, therapy table, therapy changes). Prescriptions were linked into antimicrobial therapy episodes (mean 2.4 prescriptions/episode; mean length of therapy 5.8 days), enabling several actionable findings. For example, 22% of therapy episodes for low-severity community-acquired pneumonia were congruent with prescribing guidelines, with a tendency to use broader-spectrum antibiotics. Analysis of therapy changes revealed IV to oral therapy switching was delayed by an average 3.6 days (95% CI: 3.4–3.7). Microbial cultures were performed prior to treatment initiation in just 22% of antibacterial prescriptions. The proposed methods enabled fine-grained monitoring of AMS practice down to specialities, wards and individual clinical teams by case mix, enabling more meaningful peer comparison. Conclusions It is feasible to use hospital EHRs to construct rapid, meaningful measures of prescribing quality with potential to support quality improvement interventions (audit/feedback to prescribers), engagement with front-line clinicians on optimizing prescribing, and AMS impact evaluation studies.
Background Urinary tract infection (UTI) is a leading cause of hospital admissions and is diagnosed based on urinary symptoms and microbiological cultures. Due to lags in the availability of culture results of up to 72 h, and the limitations of routine diagnostics, many patients with suspected UTI are started on antibiotic treatment unnecessarily. Predictive models based on routinely collected clinical information may help clinicians to rule out a diagnosis of bacterial UTI in low-risk patients shortly after hospital admission, providing additional evidence to guide antibiotic treatment decisions. Methods Using electronic hospital records from Queen Elizabeth Hospital Birmingham (QEHB) collected between 2011 and 2017, we aim to develop a series of models that estimate the probability of bacterial UTI at presentation in the emergency department (ED) among individuals with suspected UTI syndromes. Predictions will be made during ED attendance and at different time points after hospital admission to assess whether predictive performance may be improved over time as more information becomes available about patient status. All models will be externally validated for expected future performance using QEHB data from 2018/2019. Discussion Risk prediction models using electronic health records offer a new approach to improve antibiotic prescribing decisions, integrating clinical and demographic data with test results to stratify patients according to their probability of bacterial infection. Used in conjunction with expert opinion, they may help clinicians to identify patients that benefit the most from early antibiotic cessation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.