Abstract:The optical properties of plano-convex refractive microlenses with low Fresnel Number (typically FN < 10) are investigated. It turns out that diffraction effects at the lens aperture limit the range of the effective focal length. The upper limit of the focal length is determined by the diffraction pattern of a pinhole with equal diameter. In addition achromatic microlenses can be realized because refraction and diffraction have opposing effects on the focal length. Gaussian beam propagation method has been used for simulation. The presented results are of relevance for applications, where microlenses with small apertures and long focal lengths are used, for example, Shack Hartmann wavefront sensors or confocal microscopes.
References
A two step process has been developed for the fabrication of diffraction limited concave microlens arrays. The process is based on the photoresist filling of melted holes obtained by a preliminary photolithography step. The quality of these microlenses has been tested in a Mach-Zehnder interferometer. The method allows the fabrication of concave microlens arrays with diffraction limited optical performance. Concave microlenses with diameters ranging between 30 µm to 230 µm and numerical apertures up to 0.25 have been demonstrated. As an example, we present the realization of diffusers obtained with random sizes and locations of concave shapes.
We present the optical design and realization of a low-resolution liquid-crystal (LC) Fourier-transform spectrometer (FTS). This FTS is based on a polarization interferometer that has a Wollaston prism made of a LC material as a key component. It has a compact design, a good acceptance angle, and low temperature dependence and can be fabricated with cost-effective LC technology. Because the LC is polymerized, it is robust, and the temperature dependence is drastically reduced. The performance of a compact handheld version of the spectrometer and the characteristics (angular dependence, resolution, stray light, and temperature dependence) will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.