To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard), which provides flexible optical input/ouptut interfaces (I/Os) that allow robust coupling of indium phosphide (InP)-based active components, passive insertion of thin-film-based
Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO(2) Periodic Layer Structure (PLS) on top of one of its arms. By engineering the birefringence of the PLS we are able to design the MZI arms so that sensitivities to the most critical fabrication errors are greatly reduced. Our PBS design tolerates waveguide width variations of 400nm maintaining a polarization extinction ratio better than 13dB in the complete C-Band.
This paper describes a fabrication process for realizing Indium-Phosphide-based photonic-integrated circuits (PICs) with a high level of integration to target a wide variety of optical applications. To show the diversity in PICs achievable with our open-access foundry process, we illustrate two examples: a fully-integrated 20 Gb/s dual-polarization electro-absorption-modulated laser, and a balanced detector composed of avalanche photodiodes for detection of 28 Gb/s optical signals. On another note, datacenters are increasingly relying on hybrid integration of PICs from different technology platforms to increase transmission capacity, while simultaneously lowering cost, size, and power consumption. Several technology platforms require surface coupling rather than the traditional edge coupling to couple the light from one PIC to another. To accommodate the surface-coupling approach in our integration platform, we have developed a strategy to transfer the following optical Input/Output devices into our fabrication process: grating couplers, and vertical mirrors. In addition, we introduced etched facets into the process to improve the usability of our edge-coupling elements. We believe that the additional flexibility in Input/Output interfacing combined with the integration of multiple devices onto one PIC to reduce the number of PIC-to-PIC alignments can contribute significantly to the development of compact, low-cost, and high-performance datacenter modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.