Periodic structures with a sub-wavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves. While the use of these structures in waveguide optics was proposed in the 1990s, it has been with the more recent developments of silicon photonics and high-precision lithography techniques that sub-wavelength structures have found widespread application in the field of photonics. This review first provides an introduction to the physics of sub-wavelength structures. An overview of the applications of sub-wavelength structures is then given including: anti-reflective coatings, polarization rotators, high-efficiency fiber-chip couplers, spectrometers, high-reflectivity mirrors, athermal waveguides, multimode interference couplers, and dispersion engineered, ultra-broadband waveguide couplers among others. Particular attention is paid to providing insight into the design strategies for these devices. The concluding remarks provide an outlook on the future development of sub-wavelength structures and their impact in photonics.
Nanophotonic beamsplitters are fundamental building blocks in integrated optics, with applications ranging from high speed telecom receivers to biological sensors and quantum splitters. While high-performance multiport beamsplitters have been demonstrated in several material platforms using multimode interference couplers, their operation bandwidth remains fundamentally limited. Here, we leverage the inherent anisotropy and dispersion of a sub-wavelength structured photonic metamaterial to demonstrate ultra-broadband integrated beamsplitting. Our device, which is three times more compact than its conventional counterpart, can achieve highperformance operation over an unprecedented 500 nm design bandwidth exceeding all optical communication bands combined, and making it one of the most broadband silicon photonics components reported to date. Our demonstration paves the way toward nanophotonic waveguide components with ultrabroadband operation for next generation integrated photonic systems.
Segmenting silicon waveguides at the subwavelength scale produce an equivalent homogenous material. The geometry of the waveguide segments provides precise control over modal confinement, effective index, dispersion and birefringence, thereby opening up new approaches to design devices with unprecedented performance. Indeed, with everimproving lithographic technologies offering sub-100-nm patterning resolution in the silicon photonics platform, many practical devices based on subwavelength structures have been demonstrated in recent years. Subwavelength engineering has thus become an integral design tool in silicon photonics, and both fundamental understanding and novel applications are advancing rapidly. Here, we provide a comprehensive review of the state of the art in this field. We first cover the basics of subwavelength structures, and discuss substrate leakage, fabrication jitter, reduced backscatter, and engineering of material anisotropy. We then review recent applications including broadband waveguide couplers, high-sensitivity evanescent field sensors, low-loss devices for mid-infrared photonics, polarization management structures, spectral filters, and Manuscript
Directional couplers are extensively used devices in integrated optics, but suffer from limited operational wavelength range. Here we use, for the first time, the dispersive properties of sub-wavelength gratings to achieve a fivefold enhancement in the operation bandwidth of a silicon-on-insulator directional coupler. This approach does not compromise the size or the phase response of the device. The sub-wavelength grating based directional coupler we propose covers a 100 nm bandwidth with an imbalance of ≤ 0.6 dB between its outputs, as supported by full 3D FDTD simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.