Nanophotonic beamsplitters are fundamental building blocks in integrated optics, with applications ranging from high speed telecom receivers to biological sensors and quantum splitters. While high-performance multiport beamsplitters have been demonstrated in several material platforms using multimode interference couplers, their operation bandwidth remains fundamentally limited. Here, we leverage the inherent anisotropy and dispersion of a sub-wavelength structured photonic metamaterial to demonstrate ultra-broadband integrated beamsplitting. Our device, which is three times more compact than its conventional counterpart, can achieve highperformance operation over an unprecedented 500 nm design bandwidth exceeding all optical communication bands combined, and making it one of the most broadband silicon photonics components reported to date. Our demonstration paves the way toward nanophotonic waveguide components with ultrabroadband operation for next generation integrated photonic systems.
Subwavelength grating (SWG) structures are an essential tool in silicon photonics, enabling the synthesis of practical metamaterials with controllable refractive index. Here we propose, for the first time, tilting the grating elements to gain control over the anisotropy of the metamaterial. Rigorous FDTD simulations demonstrate that a 45°tilt results in an effective index variation on the fundamental TE mode of 0.23 refractive index units, whereas the change in the TM mode is 20 times smaller. Our simulation predictions are corroborated by experimental results. We furthemore propose an accurate theoretical model for designing tilted SWG structures based on rotated uniaxial crystals, which is functional over a wide wavelength range and for both the fundamental and higher order modes. The proposed structures open up promising venues in polarization management of silicon photonic devices.
Silicon photonics is playing a key role in areas as diverse as high-speed optical communications, neural networks, supercomputing, quantum photonics, and sensing, which demand the development of highly efficient and compact light-processing devices. The lithographic segmentation of silicon waveguides at the subwavelength scale enables the synthesis of artificial materials that significantly expand the design space in silicon photonics. The optical properties of these metamaterials can be controlled by a judicious design of the subwavelength grating geometry, enhancing the performance of nanostructured devices without jeopardizing ease of fabrication and dense integration. Recently, the anisotropic nature of subwavelength gratings has begun to be exploited, yielding unprecedented capabilities and performance such as ultrabroadband behavior, engineered modal confinement, and sophisticated polarization management. Here we provide a comprehensive review of the field of subwavelength metamaterials and their applications in silicon photonics. We first provide an in-depth analysis of how the subwavelength geometry synthesizes the metamaterial and give insight into how properties like refractive index or anisotropy can be tailored. The latest applications are then reviewed in detail, with a clear focus on how subwavelength structures improve device performance. Finally, we illustrate the design of two ground-breaking devices in more detail and discuss the prospects of subwavelength gratings as a tool for the advancement of silicon photonics.
Graded‐index materials offer virtually complete control over light propagation in integrated photonic chips but can be challenging to implement. Here, an anisotropic graded‐index metamaterial, synthesized with fully etched silicon subwavelength structures, is proposed. Based on this material, a spot size converter that expands the transverse electric (TE) mode field profile from a 0.5 µm wide silicon wire waveguide to a 15 µm wide waveguide within a length of only 14 µm is designed. Measured insertion losses are below 1 dB in an unprecedented 130 nm bandwidth, limited by the measurement setup, with full 3D finite‐difference time‐domain (FDTD) simulations predicting a bandwidth in excess of 300 nm. Furthermore, the device is well suited to feed fiber‐to‐chip grating couplers, while requiring a footprint ten times smaller than conventional adiabatic tapers.
Surface grating couplers enable efficient coupling of light between optical fibers and nanophotonic waveguides. However, in conventional grating couplers, the radiation angle is intrinsically wavelength dependent, thereby limiting their operation bandwidth. In this Letter, we present a zero-order surface grating coupler in silicon-on-insulator which overcomes this limitation by operating in the subwavelength regime. By engineering the effective refractive index of the grating region, both high coupling efficiency and broadband operation bandwidth are achieved. The grating is assisted by a silicon prism on top of the waveguide, which favors upward radiation and minimizes power losses to substrate. Using a linear apodization, our design achieves a coupling efficiency of 91% (-0.41 dB) and a 1-dB bandwidth of 126 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.