Conclusion. Th17 cells, but not Th1 cells, cooperated with RASFs in a proinflammatory feedback loop, revealing a potential mechanism by which human Th17 cells drive chronic destructive disease in patients with RA. Furthermore, the neutralization of IL-17A activity is essential in current anti-TNF therapies to suppress Th17 cell activity in patients with early RA and potentially other Th17 cell-mediated disorders.
These data indicate that 1,25(OH)(2)D(3) may contribute its bone-sparing effects in RA patients taking corticosteroids by the modulation of Th17 polarization, inhibition of Th17 cytokines, and stimulation of IL-4.
Objective. Rheumatoid arthritis is associated with the infiltration of T helper cells into the joints. It is unclear whether interferon-␥ (IFN␥)-producing Th1cells or the novel T helper subset, interleukin-17 (IL-17)-producing Th17 cells, are the pathogenic mediators of joint inflammation in chronic nonautoimmune arthritis. Therefore, this study was aimed at examining whether the Th2-specific transcription factor GATA-3 can regulate arthritis, in an experimental murine model, by modulating Th1 and/or Th17 cell polarization.Methods. Arthritis was induced with methylated bovine serum albumin (mBSA) in both wild-type and CD2 T cell-specific GATA-3 (CD2-GATA-3)-transgenic mice. At days 1 and 7 after the induction of arthritis, knee joints were scored macroscopically for arthritis severity and for histologic changes. Single-cell suspensions were generated from the spleens, lymph nodes, and inflamed knee joints. Cytokine expression by CD4؉ T cells was determined using flow cytometry, and IL-17 expression in the inflamed knee joints was determined by enzyme-linked immunosorbent assay. Analyses of gene expression were performed for Th17-associated factors.Results. Wild-type mice developed severe joint inflammation, including massive inflammatory cell infiltration and bone erosion that increased significantly over time, reaching maximal arthritis scores at day 7. In contrast, only mild joint inflammation was observed in CD2-GATA-3-transgenic mice. This mild effect was further accompanied by systemic and local reductions in the numbers of IL-17؉IFN␥؊ and IL-17؉IFN␥؉, but not IL-17؊IFN␥؉, CD4؉ T cells, and by induction of Th2 cytokine expression. Moreover, GATA-3 overexpression resulted in reduced gene expression of the Th17-associated transcription factor retinoic acidrelated orphan receptor ␥t.Conclusion. These results indicate that enforced GATA-3 expression protects against severe joint inflammation and bone erosion in mice, accompanied by reduced differentiation of Th17 cells, but not Th1 cells, during mBSA-induced arthritis.
These data show that TNF blockade does not suppress IL-17A and IL-22, which can be overcome by 1,25(OH)(2)D(3). The combination of neutralising TNF activity and 1,25(OH)(2)D(3) controls human Th17 activity and additively inhibits synovial inflammation. This indicates more valuable therapeutic potential of activation of Vitamin D receptor signalling over current TNF neutralisation strategies in patients with RA and potentially other Th17-mediated inflammatory diseases.
Upon BCR stimulation, naive B cells increase protein levels of the key downstream signaling molecule Bruton’s tyrosine kinase (BTK). Transgenic CD19-hBtk mice with B cell–specific BTK overexpression show spontaneous germinal center formation, anti-nuclear autoantibodies, and systemic autoimmunity resembling lupus and Sjögren syndrome. However, it remains unknown how T cells are engaged in this pathology. In this study, we found that CD19-hBtk B cells were high in IL-6 and IL-10 and disrupted T cell homeostasis in vivo. CD19-hBtk B cells promoted IFN-γ production by T cells and expression of the immune-checkpoint protein ICOS on T cells and induced follicular Th cell differentiation. Crosses with CD40L-deficient mice revealed that increased IL-6 production and autoimmune pathology in CD19-hBtk mice was dependent on B–T cell interaction, whereas IL-10 production and IgM autoantibody formation were CD40L independent. Surprisingly, in Btk-overexpressing mice, naive B cells manifested increased CD86 expression, which was dependent on CD40L, suggesting that T cells interact with B cells in a very early stage of immune pathology. These findings indicate that increased BTK-mediated signaling in B cells involves a positive-feedback loop that establishes T cell–propagated autoimmune pathology, making BTK an attractive therapeutic target in autoimmune disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.