This Article demonstrates that tumour-associated IDH1 somatic mutations result in a gain of enzyme function that causes the accumulation of R(-)-2-hydroxyglutarate (2HG). We proposed that accumulation of 2HG might drive oncogenesis, and referenced work demonstrating 2HG accumulation in patients with 2-hydroxyglutaric aciduria 1 . As a plausible mechanism of oncogenesis, we proposed that R(-)-2HG induces redox stress owing to impairment of the respiratory chain. This hypothesis suggests that R(-)-2HG may promote cancer mutations, and is consistent with the latency observed in glioma development and the fact that gliomas increase in incidence with age. Nonetheless, we do appreciate that there are other possible mechanisms by which R(-)-2HG may promote tumour formation. Further work has identified that the abnormal production of 2HG is associated with tumours bearing a mutation in either IDH1 or IDH2 and supports a link between 2HG accumulation and cancer. So far, we have not found any tumour samples containing IDH1 or IDH2 mutations that do not have increased 2HG levels. Determining the mechanistic link between 2HG accumulation and cancer formation, and how each stereoisomer of 2HG may drive malignancy by the same or distinct mechanism is the subject of continuing investigation by our group and others. Hum Genet. 2005; 76:358-360. [PubMed: 15609246] NIH Public Access
Cancer-associated IDH mutations are characterized by neomorphic enzyme activity and resultant 2 hydroxyglutarate (2HG) production. Mutational and epigenetic profiling of a large AML patient cohort revealed that IDH1/2-mutant AMLs display global DNA hypermethylation and a specific hypermethylation signature. Furthermore, expression of 2HG-producing IDH alleles in cells induced global DNA hypermethylation. In the AML cohort, IDH1/2 mutations were mutually exclusive with mutations in the α-ketoglutarate-dependent enzyme TET2, and TET2 loss-of-function mutations associated with similar epigenetic defects as IDH1/2 mutants. Consistent with these genetic and epigenetic data, expression of IDH mutants impaired TET2 catalytic function in cells. Finally, either expression of mutant IDH1/2 or Tet2 depletion impaired hematopoietic differentiation and increased stem/progenitor cell marker expression, suggesting a shared proleukemogenic effect.
SUMMARY
The somatic mutations in cytosolic isocitrate dehydrogenase 1 (IDH1) observed in gliomas can lead to the production of 2-hydroxyglutarate (2HG). Here, we report that tumor 2HG is elevated in a high percentage of patients with cytogenetically normal acute myeloid leukemia (AML). Surprisingly, less than half of cases with elevated 2HG possessed IDH1 mutations. The remaining cases with elevated 2HG had mutations in IDH2, the mitochondrial homolog of IDH1. These data demonstrate that a shared feature of all cancer-associated IDH mutations is production of the onco-metabolite 2HG. Furthermore, AML patients with IDH mutations display a significantly reduced number of other well characterized AML-associated mutations and/or associated chromosomal abnormalities, potentially implicating IDH mutation in a distinct mechanism of AML pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.