In protein interaction analysis, one promising method to identify the involved proteins and to characterize interacting sites at the same time is the mass spectrometric analysis of enzymatic hydrolysates of covalently cross-linked complexes. While protein identification can be accomplished by the methodology developed for proteome analysis, the unequivocal detection and characterization of cross-linked sites remained involved without selection criteria for linked peptides in addition to mass. To provide such criteria, we incorporated cross-links with a distinct isotope pattern into the microtubule-destabilizing protein Op18/stathmin (Op18) and into complexes formed by Op18 with tubulin. The deuterium-labeled cross-linking reagents bis(sulfosuccinimidyl)-glutarate-d4, -pimelate-d4, and -sebacate-d4 were prepared together with their undeuterated counterparts and applied as a 1:1 mixture of the respective d0 and d4 isotopomers. The resulting d0/d4 isotope tags allowed a straightforward mass spectrometric detection of peptides carrying the linker even in complex enzymatic protein hydrolysates. In the structure elucidation of the linked peptides by MS/MS, the assignment of the linked amino acids was again greatly facilitated by the d0/d4 tag. By applying two cross-linkers with similar reactivity but different spacer length in parallel, even doublets with very low intensity could be assigned with high confidence in MS and MS/MS spectra. Since in the Op18-tubulin complexes only a limited number of peptides carried the linker, the identification of the involved proteins per se was not impeded, thus accomplishing both protein identification and characterization of interacting sites in the same experiment. This novel methodology allowed us to significantly refine the current view of the complex between Op18 and tubulin corroborating the tubulin "capping" activity of the N-terminal domain of Op18.
The nucleosome, the fundamental structural unit of chromatin, contains an octamer of core histones H3, H4, H2A, and H2B. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function, analysis of histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2A and H2B variants derived from Jurkat cells. A combination of mass spectrometric techniques, HPLC separations, and enzymatic digestions using endoproteinase Glu-C, endoproteinase Arg-C, and trypsin were used to identify histone H2A and H2B subtypes and their modifications. We identified nine histone H2A and 11 histone H2B subtypes, among them proteins that only had been postulated at the gene level. The two main H2A variants, H2AO and H2AC, as well as H2AL were either acetylated at Lys-5 or phosphorylated at Ser-1. For the replacement histone H2AZ, acetylation at Lys-4 and Lys-7 was found. Within the eukaryotic cell nucleus the genetic information is organized in a highly conserved structural polymer, termed chromatin, that supports and controls crucial functions of the genome. The fundamental unit of eukaryotic chromatin, the nucleosome, consists of 146 base pairs of genomic DNA wrapped around an octamer of the core histone proteins H2A, H2B, H3, and H4. The amino-terminal tails of each of the four core histones are subject to several types of covalent modifications, including acetylation, methylation, and phosphorylation. These modifications affect lysines (acetylation, mono-, di-, and trimethylation), serines and threonines (phosphoryla-
The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G 1 , S, and G 2 /M. For all core histones, the modifications in the G 1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G 2 /M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G 2 /M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G 2 /M, H3 Lys 27 and Lys 36were decreased, whereas H4 Lys 20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.
LAF389 is a synthetic analogue of bengamides, a class of marine natural products that produce inhibitory effects on tumor growth in vitro and in vivo. A proteomicsbased approach has been used to identify signaling pathways affected by bengamides. LAF389 treatment of cells resulted in altered mobility of a subset of proteins on two-dimensional gel electrophoresis. Detailed analysis of one of the proteins, 14-3-3␥, showed that bengamide treatment resulted in retention of the amino-terminal methionine, suggesting that bengamides directly or indirectly inhibited methionine aminopeptidases (MetAps). Both known MetAps are inhibited by LAF389. Short interfering RNA suppression of MetAp2 also altered amino-terminal processing of 14-3-3␥. A high resolution structure of human MetAp2 co-crystallized with a bengamide shows that the compound binds in a manner that mimics peptide substrates. Additionally, the structure reveals that three key hydroxyl groups on the inhibitor coordinate the di-cobalt center in the enzyme active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.