Vesicles are dynamic supramolecular structures with a bilayer membrane consisting of lipids or synthetic amphiphiles enclosing an aqueous compartment. Lipid vesicles have often been considered as mimics for biological cells. In this paper, we present a novel strategy for the preparation of three-dimensional multilayered structures in which vesicles containing amphiphilic β-cyclodextrin are interconnected by proteins using cyclodextrin guests as bifunctional linker molecules. We compared two pairs of adhesion molecules for the immobilization of vesicles: mannose-concanavalin A and biotin-streptavidin. Microcontact printing and thiol-ene click chemistry were used to prepare suitable substrates for the vesicles. Successful immobilization of intact vesicles through the mannose-concanavalin A and biotin-streptavidin motifs was verified by fluorescence microscopy imaging and dynamic light scattering, while the vesicle adlayer was characterized by quartz crystal microbalance with dissipation monitoring. In the case of the biotin-streptavidin motif, up to six layers of intact vesicles could be immobilized in a layer-by-layer fashion using supramolecular interactions. The construction of vesicle multilayers guided by noncovalent vesicle-vesicle junctions can be taken as a minimal model for artificial biological tissue.
Interest in nanopore technology has been growing due to nanopores' unique capabilities in small molecule sensing, measurement of protein folding, and low-cost DNA and RNA sequencing. The E. coli β-barrel outer membrane protein OmpG is an excellent alternative to other protein nanopores because of its single polypeptide chain. However, the flexibility of its extracellular loops ultimately limits applications in traditional biosensing. We deleted several residues in and near loop 6 of OmpG. The dynamic structure of the new construct determined by NMR shows that loops 1, 2, 6, and 7 have reduced flexibilities compared to those of wild-type. Electrophysiological measurements show that the new design virtually eliminates flickering between open and closed states across a wide pH range. Modification of the pore lumen with a copper chelating moiety facilitates detection of small molecules. As proof of concept, we demonstrate concurrent singlemolecule biosensing of glutamate and adenosine triphosphate.
The regulated exocytotic release of neurotransmitter and hormones is accomplished by a complex protein machinery consisting in its core of SNARE proteins and the calcium sensor synaptotagmin-1. We propose a mechanism where the lipid membrane is intimately involved in coupling calcium sensing to release. We demonstrate that fusion of dense core vesicles, derived from rat PC12 cells is strongly linked to the angle between the cytoplasmic domain of the SNARE complex and the plane of the target membrane. We propose that, as this tilt angle increases, force is exerted on the SNARE transmembrane domains to drive the merger of the two bilayers. The tilt angle dramatically increases upon calcium-mediated binding of synaptotagmin to membranes, strongly depends on the surface electrostatics of the membrane, and is strictly coupled to lipid order of the target membrane.
Membrane
proteins are prime drug targets as they control the transit
of information, ions, and solutes across membranes. Here, we present
a membrane-on-nanopore platform to analyze nonelectrogenic channels
and transporters that are typically not accessible by electrophysiological
methods in a multiplexed manner. The silicon chip contains 250 000
femtoliter cavities, closed by a silicon dioxide top layer with defined
nanopores. Lipid vesicles containing membrane proteins of interest
are spread onto the nanopore-chip surface. Transport events of ligand-gated
channels were recorded at single-molecule resolution by high-parallel
fluorescence decoding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.