[1] The Congo (Zaire) River, the world's second largest river in terms both of water discharges and of drainage area after the Amazon River, has remained to date in a near-pristine state. For a period between 2 and 6 years, the mainstream near the river mouth (Brazzaville/Kinshasa station) and some of the major and minor tributaries (the Oubangui, Mpoko, and Ngoko-Sangha) were monitored every month for total suspended sediment (TSS), particulate organic carbon (POC), and dissolved organic carbon (DOC). In this large but relatively flat equatorial basin, TSS levels are very low and organic carbon is essentially exported as DOC: from 74% of TOC for the tributaries flowing in savannah regions and 86% for those flowing in the rain forest. The seasonal patterns of TSS, POC, and DOC show clockwise hysteresis in relation to river discharges, with maximum levels recorded 2 to 4 months before peak flows. At the Kinshasa/Brazzaville station, the DOC distribution is largely influenced by the input from the tributaries draining the large marshy forest area located in the center of the basin. There is a marked difference between specific fluxes, threefold higher in the forest basins than in the savannah basins. The computation of inputs to the Atlantic Ocean demonstrates that the Congo is responsible for 14.4 Â 10 6 t/yr of TOC of which 12.4 Â 10 6 t/yr is DOC and 2 Â 10 6 t/yr is POC. The three biggest tropical rivers (the Amazon, the Congo, and the Orinoco), with only 10% of the exoreic world area drained to world oceans, contribute $4% of its TSS inputs but 15-18% of its organic carbon inputs. These proportions may double when considering only world rivers discharging into the open ocean.Citation: Coynel, A., P. Seyler, H. Etcheber, M. Meybeck, and D. Orange (2005), Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River, Global Biogeochem. Cycles, 19, GB4019,
As part of a joint Brazilian–French project, entitled ‘Hydrology and Geochemistry of the Amazon Basin’, we carried out a seven‐year study (1994–2000) on the distribution, behaviour and flux of particulate and dissolved organic carbon in the Amazon River and its main tributaries (the Negro, Solimões, Branco, Madeira, Tapajós, Xingú and Trombetas rivers).The concentrations of particulate and dissolved organic carbon varied from one river to another and according to the season, but dissolved organic carbon (DOC) always accounted for about 70% of the total organic carbon (TOC). The mean concentration of dissolved organic carbon was 6·1 mg l−1 in the Madeira River, 5·83 mg l−1 in the Solimões River and 12·7 mg l−1 in the Negro River. The percentage in weight of the particulate organic carbon decreased as the concentration of suspended matter increased. The Solimões River contributed the most carbon to the Amazon River: about 500 kg C s−1 during the high water period and about 300 kg C s−1 during the low water period. However, the temporal variations in organic carbon in the Amazon River (i.e. downstream of Manaus) are basically controlled by inputs from the Negro River and its variations. The Negro River does not produce a simple dilution effect. During the high water period (between March and August) the TOC flux, calculated as the sum of the Solimões, Negro and Madeira tributaries, was about 5·7 × 1013 g C yr−1, whereas during the low water period (between September and February) the TOC flux was about 2·6 × 1013 g C yr−1.The mean annual flux of TOC at Óbidos (the final gauging station upstream of the estuary) was about 3·27 × 1013 g C yr−1 (i.e. 32·7 ± 3·3 Tg yr−1). Of this, the flux of DOC represents about 2·7 × 1013 g C yr−1 and the flux of particulate organic carbon (POC) represents about 0·5 × 1013 g C yr−1. The mean annual input of TOC by all tributaries (Negro, Solimões, Madeira, Trombetas, Tapajós and Xingú) was about 2·8 × 1013 g C yr−1. When we compared this input with the output recorded at Óbidos (3·27 × 1013 g C yr−1), we found that the amount of organic carbon increased (about 0·4 × 1013 g C yr−1). This shows that other important sources of organic carbon exist in the lower reaches of the Amazon River. These inputs can be attributed to the adjacent floodplain lake system, called ‘várzea’. Copyright © 2003 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.