The processing of bank checks is one application that continues to rely heavily on the movement of paper. Checks are currently read by human eyes and physically transported to the bank of the payer, involving significant time and cost. Since paper checks constitute a popular mechanism for noncash payments, and the volume of checks continues to be high, there is a significant interest in the banking industry for new approaches that can read paper checks automatically. We propose a new approach to read the numerical amount field on the check; this field is also called the courtesy amount field. In the case of check processing, the segmentation of unconstrained strings into individual digits is a challenging task because one must accommodate special cases involving connected or overlapping digits, broken digits, and digits physically connected to a piece of stroke that belongs to a neighboring digit. The described system involves three stages: the segmentation of the string into a series of individual characters, the normalization of each isolated character, and the recognition of each character based on a neural network classifier.
The processing of blood vessels is an indispensable part in complicated surgeries of livers and hearts as the development of medical image technologies, which requires an automatic segmentation system over CT images of organs. However, the vascular pattern of livers in CT images suffers from low contrast to background so that the existing segmentation technologies are not able to extract the blood vessels completely. In the paper, we propose a new algorithm to extract the blood vessels of livers based on the adaptive multi-scale segmentation. First, we prove that the background histogram of normal scale blood vessels obeys the Gaussian distribution in CT images, and obtain the vascular distribution function from the vascular signal segmented from the background with a local optimal threshold. Second, Hessian matrix is employed to enhance the thin blood vessels before the extraction, and a complete and clear segmentation system for blood vessels is constructed by combining the major and thin blood vessels via filtering. Experimental results show the effectiveness of the proposed method, which is able to extract more complete blood vessels for 3D system, and assist the clinical liver surgeries efficiently.
The Productivity From Information Technology (PROFIT) Initiative was established on October 23, 1992 by MIT President Charles Vest and Provost Mark Wrighton "to study the use of information technology in both the private and public sectors and to enhance productivity in areas ranging from finance to transportation, and from manufacturing to telecommunications." At the time of its inception, PROFIT took over the Composite Information Systems Laboratory and Handwritten Character Recognition Laboratory. These two laboratories are now involved in research related to context mediation and imaging respectively. OR[RING In addition, PROFIT has undertaken joint efforts with a number of research centers, laboratories, and programs at MIT, and the results of these efforts are documented in Discussion Papers published by PROFIT and/or the collaborating MIT entity.Correspondence can be addressed to:The Researchers at MIT have looked at the possibility of taking information directly from paper documents, especially handwritten documents, to computeraccessible media. Automated reading involves several steps as follows:Scanning of document; Location of area to be "read"; Decomposing the selected area into separate characters; Adjusting size and slant of each character; Recognizing each character; and Testing whether input has been correctly read.Based on several years of sustained research, the researchers have attained very high "reading" speed and accuracy, even in situations where the quality of the input material is poor. Patent rights for some of the new techniques have been applied for. Sponsor companies are eligible to test the new techniques in their respective environments at no charge.The work performed so far is described in a number of working papers. AbstractA knowledge based segmentation critic algorithm to enhance recognition of courtesy amounts on bank checks is proposed in this paper. This algorithm extracts the context from the handwritten material and uses a syntax parser based on a deterministic finite automaton to provide adequate feedback to enhance recognition. The segmentation critic presented is capable of handling a number of commonly used styles for courtesy amount representation. Both handwritten and machine written numeric strings were utilized to test the efficacy of the preprocessor for the check recognition system described in this paper. The substitution error fell by 1.0% in our early tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.