We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ∼450 deg 2 of imaging data from the Kilo Degree Survey (KiDS). For a flat ΛCDM cosmology with a prior on H 0 that encompasses the most recent direct measurements, we find S 8 ≡ σ 8 Ω m /0.3 = 0.745 ± 0.039. This result is in good agreement with other low redshift probes of large scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S 8 and 'substantial discordance' in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved 'self-calibrating' version of lensfit validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov Chains are available at http://kids.strw.leidenuniv.nl.
Aims. The maximum-likelihood method is the standard approach to obtain model fits to observational data and the corresponding confidence regions. We investigate possible sources of bias in the log-likelihood function and its subsequent analysis, focusing on estimators of the inverse covariance matrix. Furthermore, we study under which circumstances the estimated covariance matrix is invertible. Methods. We perform Monte-Carlo simulations to investigate the behaviour of estimators for the inverse covariance matrix, depending on the number of independent data sets and the number of variables of the data vectors. Results. We find that the inverse of the maximum-likelihood estimator of the covariance is biased, the amount of bias depending on the ratio of the number of bins (data vector variables), p, to the number of data sets, n. This bias inevitably leads to an -in extreme cases catastrophic -underestimation of the size of confidence regions. We report on a method to remove this bias for the idealised case of Gaussian noise and statistically independent data vectors. Moreover, we demonstrate that marginalisation over parameters introduces a bias into the marginalised log-likelihood function. Measures of the sizes of confidence regions suffer from the same problem. Furthermore, we give an analytic proof for the fact that the estimated covariance matrix is singular if p > n.
We present the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) that accurately determines a weak gravitational lensing signal from the full 154 deg2 of deep multicolour data obtained by the CFHT Legacy Survey. Weak gravitational lensing by large‐scale structure is widely recognized as one of the most powerful but technically challenging probes of cosmology. We outline the CFHTLenS analysis pipeline, describing how and why every step of the chain from the raw pixel data to the lensing shear and photometric redshift measurement has been revised and improved compared to previous analyses of a subset of the same data. We present a novel method to identify data which contributes a non‐negligible contamination to our sample and quantify the required level of calibration for the survey. Through a series of cosmology‐insensitive tests we demonstrate the robustness of the resulting cosmic shear signal, presenting a science‐ready shear and photometric redshift catalogue for future exploitation.
We present a comprehensive analysis of weak gravitational lensing by large-scale structure in the Hubble Space Telescope Cosmic Evolution Survey (COSMOS), in which we combine space-based galaxy shape measurements with ground-based photometric redshifts to study the redshift dependence of the lensing signal and constrain cosmological parameters. After applying our weak lensingoptimized data reduction, principal-component interpolation for the spatially, and temporally varying ACS point-spread function, and improved modelling of charge-transfer inefficiency, we measured a lensing signal that is consistent with pure gravitational modes and no significant shape systematics. We carefully estimated the statistical uncertainty from simulated COSMOS-like fields obtained from ray-tracing through the Millennium Simulation, including the full non-Gaussian sampling variance. We tested our lensing pipeline on simulated space-based data, recalibrated non-linear power spectrum corrections using the ray-tracing analysis, employed photometric redshift information to reduce potential contamination by intrinsic galaxy alignments, and marginalized over systematic uncertainties. We find that the weak lensing signal scales with redshift as expected from general relativity for a concordance ΛCDM cosmology, including the full cross-correlations between different redshift bins. Assuming a flat ΛCDM cosmology, we measure σ 8 (Ω m /0.3) 0.51 = 0.75 ± 0.08 from lensing, in perfect agreement with WMAP-5, yielding joint constraints Ω m = 0.266 +0.025 −0.023 , σ 8 = 0.802 +0.028 −0.029 (all 68.3% conf.). Dropping the assumption of flatness and using priors from the HST Key Project and Big-Bang nucleosynthesis only, we find a negative deceleration parameter q 0 at 94.3% confidence from the tomographic lensing analysis, providing independent evidence of the accelerated expansion of the Universe. For a flat wCDM cosmology and prior w ∈ [−2, 0], we obtain w < −0.41 (90% conf.). Our dark energy constraints are still relatively weak solely due to the limited area of COSMOS. However, they provide an important demonstration of the usefulness of tomographic weak lensing measurements from space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.