In this paper, we introduce an ultra-high frequency radio frequency identification (UHF-RFID) mobile robot platform that is capable of performing fully autonomous inventory taking and stocktaking by providing three-dimensional (3D) product maps and thus making possible the concept of a smart warehouse. The proposed novel hardware architecture consists of an eight-channel UHF-RFID-listener for parallel signal phase recovery, including two different carrier leakage suppression circuits and a correlation decoder for each channel for the tag signal, which can handle a backscatter link frequency (BLF) deviation of up to 22 % to decode the tag data. The system also uses eight parallel channels for multiple-input multiple-output (MIMO) localization. For the system evaluation we labeled clothes stored in a warehouse with tags and generated their product map. The proposed localization algorithm is based on a synthetic aperture radar (SAR) MIMO approach that needs exact knowledge of the antenna positions and, therefore, of the driven trajectory. This position is provided by the robot, which takes advantage of a simultaneous localization and mapping (SLAM) algorithm, determining the position with 1 cm accuracy while generating two-dimensional (2D) maps of the surroundings. We placed ten tags at known positions to assess the system's performance and were able to locate these tags within a root mean square error (RMSE) of 1.45 cm in 3D.
Recently, a novel chipless radio-frequency identification (RFID) concept based on polarimetric radar barcodes was introduced. These tags are similar to the well known optical quick response codes (QR codes). In polarimetric radar barcodes the information is stored as polarimetrically coded areas arranged in a grid and read out by an imaging radar. This paper presents a novel concept for elegantly creating polarimetric barcodes based on dipole scattering domains. Each scattering domain consists of several hundred dipoles. The dipoles are either uniformly arranged at a specific angle, which produces a specific angle-dependent polarization response, or randomly oriented to produce an unpolarized response. In order to read out the polarimetric information stored in the tags, the position and rotation of the radar barcodes needs to be determined. Our research reveals that using three reference elements and a novel decoding algorithm, a position-and rotation-tolerant readout is possible. To reduce distortions caused by the surface of the structure carrying the dipoles, different matching layer concepts were investigated. The novel chipless RFID tag concept is tested using a fully polarimetric W-band (75-110 GHz) imaging radar. The implemented setup allows for a theoretical data capacity of 1.92 bit/cm 2 on a single layer PCB. In our measurements, we achieved a data capacity of 1.52 bit/cm 2 . Utilizing the chosen tag size of 45 mm × 45 mm resulted in a tag with a greater than 30 bit data capacity, which is an excellent value for chipless RFID.INDEX TERMS Chipless radio-frequency identification (RFID), image processing, millimeter wave, radar imaging, RFID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.