SUMMARYIn many adult stem cell lineages, the continuous production of functional differentiated cells depends on the maintenance of progenitor cells in an undifferentiated and proliferative state, as well as the subsequent commitment to proper terminal differentiation. In the Drosophila male germline stem cell (GSC) lineage, a key differentiation factor, Bag of marbles (Bam), is required for the transition from proliferative spermatogonia to differentiating spermatocytes. We show that bam mRNA, but not Bam, is present in spermatocytes, suggesting that bam is regulated post-transcriptionally. Consistent with this, repression of Bam accumulation is achieved by microRNAs via the bam 3ЈUTR. When the bam 3ЈUTR was substituted with the 3ЈUTR of a constitutively expressed -Tubulin, Bam became stabilized in spermatocytes. Moreover, such a persistent expression of Bam in spermatocytes was recapitulated by specifically mutating the putative miR-275/miR-306 recognition site at the bam 3ЈUTR. In addition, overexpression of miR-275 or miR-306 in spermatogonial cells resulted in a delay of the proliferation-to-differentiation transition and resembled the bam loss-of-function phenotype, suggesting that these microRNAs are sufficient to downregulate Bam. Finally, the failure of Bam downregulation in spermatocytes affected spermatid terminal differentiation and resulted in increased male sterility. Our results demonstrate that microRNAs control the stem cell differentiation pathway through regulating Bam, the downregulation of which is crucial for proper spermatid terminal differentiation.
Background: The oncogene LSF (encoded by TFCP2) has been proposed as a novel therapeutic target for multiple cancers. LSF overexpression in patient tumors correlates with poor prognosis in particular for both hepatocellular carcinoma and colorectal cancer. The limited treatment outcomes for these diseases and disappointing clinical results, in particular, for hepatocellular carcinoma in molecularly targeted therapies targeting cellular receptors and kinases, underscore the need for molecularly targeting novel mechanisms. LSF small molecule inhibitors, Factor Quinolinone Inhibitors (FQIs), have exhibited robust anti-tumor activity in multiple pre-clinical models, with no observable toxicity. Methods: To understand how the LSF inhibitors impact cancer cell proliferation, we characterized the cellular phenotypes that result from loss of LSF activity. Cell proliferation and cell cycle progression were analyzed, using HeLa cells as a model cancer cell line responsive to FQI1. Cell cycle progression was studied either by time lapse microscopy or by bulk synchronization of cell populations to ensure accuracy in interpretation of the outcomes. In order to test for biological specificity of targeting LSF by FQI1, results were compared after treatment with either FQI1 or siRNA targeting LSF. Results: Highly similar cellular phenotypes are observed upon treatments with FQI1 and siRNA targeting LSF. Along with similar effects on two cellular biomarkers, inhibition of LSF activity by either mechanism induced a strong delay or arrest prior to metaphase as cells progressed through mitosis, with condensed, but unaligned, chromosomes. This mitotic disruption in both cases resulted in improper cellular division leading to multiple outcomes: multinucleation, apoptosis, and cellular senescence.
The oncogene LSF has been proposed as a novel target with therapeutic potential for multiple cancers. LSF overexpression correlates with poor prognosis for both liver and colorectal cancers, for which there are currently limited therapeutic treatment options. In particular, molecularly targeted therapies for hepatocellular carcinoma targeting cellular receptors and kinases have yielded disappointing clinical results, providing an urgency for targeting distinct mechanisms. LSF small molecule inhibitors, Factor Quinolinone Inhibitors (FQIs), have exhibited robust anti-tumor activity in multiple pre-clinical models of hepatocellular carcinoma, with no observable toxicity. To understand how the inhibitors impact cancer cell proliferation, we characterized the cellular phenotypes that result from loss of LSF activity. Phenotypically, inhibition of LSF activity induced a mitotic delay with condensed, but unaligned, chromosomes.This mitotic disruption resulted in improper cellular division leading to multiple outcomes: multi-nucleation, apoptosis, and cellular senescence. The cellular phenotypes observed upon FQI1 treatment were due specifically to the loss of LSF activity, as siRNA specifically targeting LSF produced nearly identical phenotypes. Taken together, these findings confirm that LSF is a promising therapeutic target for cancer treatment.Significance Specific inhibition of LSF by either small molecules or siRNA results in mitotic defects resulting in cell death or senescence, supporting the promise for LSF inhibitory strategies as treatment for LSF-related cancers with high unmet medical needs.
Expansile nanoparticles (eNPs) are a promising pH-responsive polymeric drug delivery vehicle, as demonstrated in multiple intraperitoneal cancer models. However, previous delivery routes were limited to intraperitoneal injection and to a single agent, paclitaxel. In this study, we preliminarily evaluate the biodistribution and in vivo toxicity of eNPs in mice after intravenous injection. The eNPs localize predominantly to the liver, without detectable acute toxicity in the liver or other key organs. On the basis of these results, we encapsulated FQI1, a promising lead compound for treatment of hepatocellular carcinoma, in eNPs. eNPs are taken up by cancerous and noncancerous human liver cells in vitro, although at different rates. FQI1-loaded eNPs release FQI1 in a pH-dependent manner and limit proliferation equivalently to unencapsulated FQI1 in immortalized hepatocytes in vitro. eNPs are a versatile platform delivery system for therapeutic compounds and have potential utility in the treatment of liver disease.
Factor quinolinone inhibitors are promising anti-cancer compounds, initially characterized as specific inhibitors of the oncogenic transcription factor LSF (TFCP2). These compounds exert anti-proliferative activity at least in part by disrupting mitotic spindles. Herein, we report additional interphase consequences of the initial lead compound, FQI1, in two telomerase immortalized cell lines. Within minutes of FQI1 addition, the microtubule network is disrupted, resulting in a substantial, although not complete, depletion of microtubules as evidenced both by microtubule sedimentation assays and microscopy. Surprisingly, this microtubule breakdown is quickly followed by an increase in tubulin acetylation in the remaining microtubules. The sudden breakdown and partial depolymerization of the microtubule network precedes FQI1-induced morphological changes. These involve rapid reduction of cell spreading of interphase fetal hepatocytes and increase in circularity of retinal pigment epithelial cells. Microtubule depolymerization gives rise to FH-B cell compaction, as pretreatment with taxol prevents this morphological change. Finally, FQI1 decreases the rate and range of locomotion of interphase cells, supporting an impact of FQI1-induced microtubule breakdown on cell motility. Taken together, our results show that FQI1 interferes with microtubule-associated functions in interphase, specifically cell morphology and motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.