The application of additive manufacturing changes from prototypes to series production. In order to fulfill all requirements of series production, the process and the material characteristics must be known. The machine operator of additive manufacturing systems is both a component and a material producer. Nevertheless, there is no standardized procedure for the manufacturing or testing of such materials. This includes the high degree of anisotropy of additively manufactured polymers via material extrusion. The interlayer bonding performance between two layers in the manufacturing direction z is the obvious weakness that needs to be improved. By optimizing this interlayer contact zone, the overall performance of the additively manufactured polymer is increased. This was achieved by process modification with an infrared preheating system (IPS) to keep the temperature of the interlayer contact zone above the glass transition temperature during the manufacturing process. Combining destructive and non-destructive testing methods, the process modification IPS was determined and evaluated by a systematic approach for characterizing the interlayer bonding performance. Thereby, tensile tests under quasi-static and cyclic loading were carried out on short carbon fiber-reinforced polyamide (SCFRP). In addition, micro-computed tomography and microscopic investigations were used to determine the process quality. The IPS increases the ultimate interlayer tensile strength by approx. 15% and shows a tendency to significantly improved the fatigue properties. Simultaneously, the analysis of the micro-computed tomography data shows a homogenization of the void distribution by using the IPS.
The oil supply at the interface between the top ring and the cylinder liner (TRCL) plays a major role in an internal combustion engines efficiency. In particular, the interface forms a trade-off between the serving of enough lubricant for sufficient lubrication conditions and emissions through subsequent combustion. This can lead to deficient top ring lubrication conditions. In this study, a new developed reciprocating long-stroke tribometer, enabling the variation of oil supply, is used to investigate such application-like starved lubrication conditions of the TRCL interface. With the simulative investigations, a comparison with the fired engine is possible. The performance of diamond-like carbon coatings is compared to standard nitrided piston rings. It was found that the tetrahedral amorphous carbon (ta-C) coatings exhibit up to 31% reduced friction as well as a lower wear under starved lubrication conditions. Simulative investigations show a good correlation between engine friction and tribometer measurements for selected oil supply conditions.
Generating serial components via additive manufacturing (AM) a deep understanding of process-related characteristics is necessary. The extrusion-based AM called fused layer manufacturing (FLM), also known as fused deposition modeling (FDM™) or fused filament fabrication (FFF) is an AM process for producing serial components. Improving mechanical properties of AM parts is done by adding fibers in the raw material to reinforce the polymer. The study aims to create a more detailed comprehension of FLM and process-related characteristics with their influence on the composite.Thereby, a short carbon fiber-reinforced polyamide (CarbonX™ Nylon, 3DXTECH, USA) with 12.5 wt.‑% fiber content, 7 μm fiber diameter, and 150 to 400 µm fiber length distribution was investigated. To separate process-related characteristics of FLM, reference specimens were fabricated via injection molding (IM) with single-batch material. For the mechanical characterization, quasi-static tensile tests were carried out in accordance to DIN 527‑2. Quality assessment including void content and void distribution was performed via micro-computed tomography (CT).The mechanical characterization clarifies effects on mechanical properties depending on process-related characteristics of FLM. CT scans show higher void contents of FLM specimens compared to IM specimens and void orientation dependent on printing direction. FLM shows process-related characteristics which generally strengthen mechanical properties of polymers. Nevertheless, tensile strength of FLM specimens decrease by more than 28% compared to quasi-homogenous IM specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.