IMPORTANCE Players of American football may be at increased risk of long-term neurological conditions, particularly chronic traumatic encephalopathy (CTE). OBJECTIVE To determine the neuropathological and clinical features of deceased football players with CTE. DESIGN, SETTING, AND PARTICIPANTS Case series of 202 football players whose brains were donated for research. Neuropathological evaluations and retrospective telephone clinical assessments (including head trauma history) with informants were performed blinded. Online questionnaires ascertained athletic and military history. EXPOSURES Participation in American football at any level of play. MAIN OUTCOMES AND MEASURES Neuropathological diagnoses of neurodegenerative diseases, including CTE, based on defined diagnostic criteria; CTE neuropathological severity (stages I to IV or dichotomized into mild [stages I and II] and severe [stages III and IV]); informant-reported athletic history and, for players who died in 2014 or later, clinical presentation, including behavior, mood, and cognitive symptoms and dementia. RESULTS Among 202 deceased former football players (median age at death, 66 years [interquartile range, 47–76 years]), CTE was neuropathologically diagnosed in 177 players (87%; median age at death, 67 years [interquartile range, 52–77 years]; mean years of football participation, 15.1 [SD, 5.2]), including 0 of 2 pre–high school, 3 of 14 high school (21%), 48 of 53 college (91%), 9 of 14 semiprofessional (64%), 7 of 8 Canadian Football League (88%), and 110 of 111 National Football League (99%) players. Neuropathological severity of CTE was distributed across the highest level of play, with all 3 former high school players having mild pathology and the majority of former college (27 [56%]), semiprofessional (5 [56%]), and professional (101 [86%]) players having severe pathology. Among 27 participants with mild CTE pathology, 26 (96%) had behavioral or mood symptoms or both, 23 (85%) had cognitive symptoms, and 9 (33%) had signs of dementia. Among 84 participants with severe CTE pathology, 75 (89%) had behavioral or mood symptoms or both, 80 (95%) had cognitive symptoms, and 71 (85%) had signs of dementia. CONCLUSIONS AND RELEVANCE In a convenience sample of deceased football players who donated their brains for research, a high proportion had neuropathological evidence of CTE, suggesting that CTE may be related to prior participation in football.
Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE). Most instances of CTE occur in association with the play of sports, but CTE has also been reported in association with blast injuries and other neurotrauma. Symptoms of CTE include behavioral and mood changes, memory loss, cognitive impairment and dementia. Like many other neurodegenerative diseases, CTE is diagnosed with certainty only by neuropathological examination of brain tissue. CTE is a tauopathy characterized by the deposition of hyperphosphorylated tau (p-tau) protein as neurofibrillary tangles, astrocytic tangles and neurites in striking clusters around small blood vessels of the cortex, typically at the sulcal depths. Severely affected cases show p-tau pathology throughout the brain. Abnormalities in phosphorylated 43 kDa TAR DNA-binding protein are found in most cases of CTE; beta-amyloid is identified in 43%, associated with age. Given the importance of sports participation and physical exercise to physical and psychological health as well as disease resilience, it is critical to identify the genetic risk factors for CTE as well as to understand how other variables, such as stress, age at exposure, gender, substance abuse and other exposures, contribute to the development of CTE.
The chronic effects of repetitive head impacts (RHI) on the development of neuroinflammation and its relationship to chronic traumatic encephalopathy (CTE) are unknown. Here we set out to determine the relationship between RHI exposure, neuroinflammation, and the development of hyperphosphorylated tau (ptau) pathology and dementia risk in CTE. We studied a cohort of 66 deceased American football athletes from the Boston University-Veteran’s Affairs-Concussion Legacy Foundation Brain Bank as well as 16 non-athlete controls. Subjects with a neurodegenerative disease other than CTE were excluded. Counts of total and activated microglia, astrocytes, and ptau pathology were performed in the dorsolateral frontal cortex (DLF). Binary logistic and simultaneous equation regression models were used to test associations between RHI exposure, microglia, ptau pathology, and dementia. Duration of RHI exposure and the development and severity of CTE were associated with reactive microglial morphology and increased numbers of CD68 immunoreactive microglia in the DLF. A simultaneous equation regression model demonstrated that RHI exposure had a significant direct effect on CD68 cell density (p < 0.0001) and ptau pathology (p < 0.0001) independent of age at death. The effect of RHI on ptau pathology was partially mediated through increased CD68 positive cell density. A binary logistic regression demonstrated that a diagnosis of dementia was significantly predicted by CD68 cell density (OR = 1.010, p = 0.011) independent of age (OR = 1.055, p = 0.007), but this effect disappeared when ptau pathology was included in the model. In conclusion, RHI is associated with chronic activation of microglia, which may partially mediate the effect of RHI on the development of ptau pathology and dementia in CTE. Inflammatory molecules may be important diagnostic or predictive biomarkers as well as promising therapeutic targets in CTE.
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild traumatic brain injury. It is defined pathologically by the abnormal accumulation of tau in a unique pattern that is distinct from other tauopathies, including Alzheimer’s disease (AD). Although trauma has been suggested to increase amyloid β peptide (Aβ) levels, the extent of Aβ deposition in CTE has not been thoroughly characterized. We studied a heterogeneous cohort of deceased athletes and military veterans with neuropathologically diagnosed CTE (n = 114, mean age at death = 60) to test the hypothesis that Aβ deposition is altered in CTE and associated with more severe pathology and worse clinical outcomes. We found that Aβ deposition, either as diffuse or neuritic plaques, was present in 52 % of CTE subjects. Moreover, Aβ deposition in CTE occurred at an accelerated rate and with altered dynamics in CTE compared to a normal aging population (OR = 3.8, p < 0.001). We also found a clear pathological and clinical dichotomy between those CTE cases with Aβ plaques and those without. Aβ deposition was significantly associated with the presence of the APOE ε4 allele (p = 0.035), older age at symptom onset (p < 0.001), and older age at death (p < 0.001). In addition, when controlling for age, neuritic plaques were significantly associated with increased CTE tauopathy stage (β = 2.43, p = 0.018), co-morbid Lewy body disease (OR = 5.01, p = 0.009), and dementia (OR = 4.45, p = 0.012). A subset of subjects met the diagnostic criteria for both CTE and AD, and in these subjects both Aβ plaques and total levels of Aβ1–40 were increased at the depths of the cortical sulcus compared to the gyral crests. Overall, these findings suggest that Aβ deposition is altered and accelerated in a cohort of CTE subjects compared to normal aging and that Aβ is associated with both pathological and clinical progression of CTE independent of age.
Objective Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to contact and collision sports, including American football. We hypothesized a dose–response relationship between duration of football played and CTE risk and severity. Methods In a convenience sample of 266 deceased American football players from the Veterans Affairs–Boston University–Concussion Legacy Foundation and Framingham Heart Study Brain Banks, we estimated the association of years of football played with CTE pathological status and severity. We evaluated the ability of years played to classify CTE status using receiver operating characteristic curve analysis. Simulation analyses quantified conditions that might lead to selection bias. Results In total, 223 of 266 participants met neuropathological diagnostic criteria for CTE. More years of football played were associated with having CTE (odds ratio [OR] = 1.30 per year played, 95% confidence interval [CI] = 1.19–1.41; p = 3.8 × 10−9) and with CTE severity (severe vs mild; OR = 1.14 per year played, 95% CI = 1.07–1.22; p = 3.1 × 10−4). Participants with CTE were 1/10th as likely to have played <4.5 years (negative likelihood ratio [LR] = 0.102, 95% CI = 0.100–0.105) and were 10 times as likely to have played >14.5 years (positive LR = 10.2, 95% CI = 9.8–10.7) compared with participants without CTE. Sensitivity and specificity were maximized at 11 years played. Simulation demonstrated that years played remained adversely associated with CTE status when years played and CTE status were both related to brain bank selection across widely ranging scenarios. Interpretation The odds of CTE double every 2.6 years of football played. After accounting for brain bank selection, the magnitude of the relationship between years played and CTE status remained consistent. ANN NEUROL 2020;87:116–131
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.