Desmin-related myopathies (DRM) are inherited neuromuscular disorders characterized by adult onset and delayed accumulation of aggregates of desmin, a protein belonging to the type III intermediate filament family, in the sarcoplasma of skeletal and cardiac muscles. In this paper, we have mapped the locus for DRM in a large French pedigree to a 26-cM interval in chromosome 11q21-23. This region contains the alphaB-crystallin gene (CRYAB), a candidate gene encoding a 20-kD protein that is abundant in lens and is also present in a number of non-ocular tissues, including cardiac and skeletal muscle. AlphaB-crystallin is a member of the small heat shock protein (shsp) family and possesses molecular chaperone activity. We identified an R120G missense mutation in CRYAB that co-segregates with the disease phenotype in this family. Muscle cell lines transfected with the mutant CRYAB cDNA showed intracellular aggregates that contain both desmin and alphaB-crystallin as observed in muscle fibers from DRM patients. These results are the first to identify a defect in a molecular chaperone as a cause for an inherited human muscle disorder.
Hsp27 and alphaB-crystallin are molecular chaperones that are constitutively expressed in several mammalian cells, particularly in pathological conditions. These proteins share functions as diverse as protection against toxicity mediated by aberrantly folded proteins or oxidative-inflammation conditions. In addition, these proteins share anti-apoptotic properties and are tumorigenic when expressed in cancer cells. This review summarizes the current knowledge about Hsp27 and alphaB-crystallin and the implications, either positive or deleterious, of these proteins in pathologies such as neurodegenerative diseases, myopathies, asthma, cataracts and cancers. Approaches towards therapeutic strategies aimed at modulating the expression and/or the activities of Hsp27 and alphaB-crystallin are presented.
Desminopathy is one of the most common intermediate filament human disorders associated with mutations in closely interacting proteins, desmin and alphaB-crystallin. The inheritance pattern in familial desminopathy is characterized as autosomal dominant or autosomal recessive, but many cases have no family history. At least some and likely most sporadic desminopathy cases are associated with de novo DES mutations. The age of disease onset and rate of progression may vary depending on the type of inheritance and location of the causative mutation. Typically, the illness presents with lower and later upper limb muscle weakness slowly spreading to involve truncal, neckflexor, facial and bulbar muscles. Skeletal myopathy is often combined with cardiomyopathy manifested by conduction blocks, arrhythmias and chronic heart failure resulting in premature sudden death. Respiratory muscle weakness is a major complication in some patients. Sections of the affected skeletal and cardiac muscles show abnormal fibre areas containing chimeric aggregates consisting of desmin and other cytoskeletal proteins. Various DES gene mutations: point mutations, an insertion, small in-frame deletions and a larger exon-skipping deletion, have been identified in desminopathy patients. The majority of these mutations are located in conserved alpha-helical segments, but additional mutations have recently been identified in the tail domain. Filament and network assembly studies indicate that most but not all disease-causing mutations make desmin assembly-incompetent and able to disrupt a pre-existing filamentous network in dominant-negative fashion. AlphaBcrystallin serves as a chaperone for desmin preventing its aggregation under various forms of stress; mutant CRYAB causes cardiac and skeletal myopathies identical to those resulting from DES mutations.
Mutations of the human desmin gene on chromosome 2q35 cause a familial or sporadic form of skeletal myopathy frequently associated with cardiac abnormalities. Here, we report the pathogenic effects of a novel heterozygous R350P desmin missense mutation, which resides in the evolutionary highly conserved coil 2B domain of the alpha-helical coiled-coil desmin rod domain, on the assembly of desmin intermediate filaments (IF) in cultured cells and in vitro. By transfection experiments, we show that R350P desmin is incapable of de novo formation of a desmin IF network in vimentin-free BMGE+H, MCF7 and SW13 cells and that it disrupts the endogenous vimentin cytoskeleton in 3T3 fibroblast cells. Hence, transfected cells displayed abnormal cytoplasmic protein aggregates reminiscent of desmin-positive protein deposits seen in the immunohistochemical and ultrastructural analysis of skeletal muscle derived from the index patient of the affected family. To study the functional effects of the R350P desmin mutation at the protein level, we performed in vitro assembly studies with wild-type (WT) and mutant desmin protein. Our analysis revealed that the in vitro assembly process of R350P desmin is already disturbed at the unit length filament level and that further association reactions generate huge, tightly packed protein aggregates. On assessing the pathogenic effects of R350P desmin in various mixtures with WT desmin, we show that a ratio of 1 : 3 (R350P desmin/WT desmin) is sufficient to effectively block the normal polymerization process of desmin IFs. Our findings indicate that the heterozygous R350P desmin mutation exerts a dominant negative effect on the ordered lateral arrangement of desmin subunits. This disturbance of the lateral packing taking place in the first phase of assembly is ultimately leading to abnormal protein aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.