The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by B. Christophe (B) · B. Foulon · A.
A high-performance airborne UV Rayleigh lidar system was developed within the European project DELICAT. With its forward-pointing architecture it aims at demonstrating a novel detection scheme for clear air turbulence (CAT) for an aeronautics safety application. Due to its occurrence in clear and clean air at high altitudes (aviation cruise flight level), this type of turbulence evades microwave radar techniques and in most cases coherent Doppler lidar techniques. The present lidar detection technique relies on air density fluctuations measurement and is thus independent of backscatter from hydrometeors and aerosol particles. The subtle air density fluctuations caused by the turbulent air flow demand exceptionally high stability of the setup and in particular of the detection system. This paper describes an airborne test system for the purpose of demonstrating this technology and turbulence detection method: a high-power UV Rayleigh lidar system is installed on a research aircraft in a forward-looking configuration for use in cruise flight altitudes. Flight test measurements demonstrate this unique lidar system being able to resolve air density fluctuations occurring in light-to-moderate CAT at 5 km or moderate CAT at 10 km distance. A scaling of the determined stability and noise characteristics shows that such performance is adequate for an application in commercial air transport.
The low-biased, fast, airborne, short-range, and range-resolved determination of atmospheric wind speeds plays a key role in wake vortex and turbulence mitigation strategies and would improve flight safety, comfort, and economy. In this work, a concept for an airborne, UV, direct-detection Doppler wind lidar receiver is presented. A monolithic, tilted, field-widened, fringe-imaging Michelson interferometer (FWFIMI) combines the advantages of low angular sensitivity, high thermo-mechanical stability, independence of the specific atmospheric conditions, and potential for fast data evaluation. Design and integration of the FWFIMI into a lidar receiver concept are described. Simulations help to evaluate the receiver design and prospect sufficient performance under different atmospheric conditions.
The new generation of optical time transfer will allow the synchronization of remote ultra stable clocks and the determination of their performances over intercontinental distances. The principle of T2L2 (Time Transfer by Laser Link) is based on the techniques of satellite laser ranging coupled with time-frequency metrology. It consists of synchronizing ground and space clocks using short laser pulses travelling between ground clocks and satellite equipment. The instrument will be integrated on the ocean altimetry satellite Jason-2 that is scheduled for launch in 2008. The experiment should enhance the performance of time transfer by one or two magnitudes compared to existing microwave techniques such as GPS and Two-Way Satellite Time and Frequency Transfer (TWSTFT).
The T2L2 project (time transfer by laser link) allows for the synchronization of remote ultra-stable clocks over intercontinental distances (Fridelance et al 1997 Exp. Astron. 7, Samain and Fridelance 1998 Metrologia 35 151–9). The principle is derived from satellite laser ranging technology with dedicated space equipment designed to record arrival times of laser pulses at the satellite. The space segment has been launched in June 2008 as a passenger experiment on the ocean altimetry satellite Jason 2. T2L2 had been specified to yield a time stability of better than 1 ps over 1000 s integration time and an accuracy of better than 100 ps. This level of performance requires a rigorous data processing which can be performed only with a comprehensive calibration model of the whole instrumentation. For this purpose, several experimental measurements have been performed before and during the integration phase of the T2L2 space instrument. This instrument model is one of the cornerstones of the data reduction process which is carried out to translate the raw information to a usable picosecond time transfer. After providing a global synopsis of the T2L2 space instrument, the paper gives a description of the experimental setup for the instrument characterization. It then details the different contributions within the calibration model and concludes with an applied example of a space to ground time transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.