The rising climatic degradation due to the emission of greenhouse gases is leading to emergence of clean combustion technology, oxy-fuel combustion to minimize the emissions of carbon dioxide into the atmosphere in combustion. Nitrogen molecules are used as probe molecule in laser-based combustion diagnostic in nitrogen rich air combustion. However, with the introduction of oxy-fuel combustion, carbon dioxide becomes the dominant molecule and has to be considered as probe molecule in combustion diagnostic. A detailed knowledge about thermodynamic properties: temperature, pressure and species concentration are necessary in optimization of combustion and minimizing the emission into the atmosphere. The non-intrusive spectroscopic measurement techniques are the most accurate methods to determine the combustion properties. The purpose of this review is to provide a brief overview of the recent advances made in application of coherent anti-Stokes Raman scattering of carbon dioxide for development of models for thermometry. However, there is no sufficient empirical data of time-domain S-branch Raman linewidth dependence on temperature that has been determined for pure-rotational coherent anti-Stokes Raman scattering of carbon dioxide and its mixtures for development of models for thermometry.
The rising climatic degradation due to the emission of greenhouse gases is leading to emergence of clean combustion technology, oxy-fuel combustion to minimize the emissions of carbon dioxide into the atmosphere in combustion. Nitrogen molecules are used as probe molecule in laser-based combustion diagnostic in nitrogen rich air combustion. However, with the introduction of oxy-fuel combustion, carbon dioxide becomes the dominant molecule and has to be considered as probe molecule in combustion diagnostic. A detailed knowledge about thermodynamic properties: temperature, pressure and species concentration are necessary in optimization of combustion and minimizing the emission into the atmosphere. The non-intrusive spectroscopic measurement techniques are the most accurate methods to determine the combustion properties. The purpose of this review is to provide a brief overview of the recent advances made in application of coherent anti-Stokes Raman scattering of carbon dioxide for development of models for thermometry. However, there is no sufficient empirical data of time-domain S-branch Raman linewidth dependence on temperature that has been determined for pure-rotational coherent anti-Stokes Raman scattering of carbon dioxide and its mixtures for development of models for thermometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.