We investigated the flow characteristics and heat transfer during nasal breathing in the complete human upper airway through the respiratory cycle using transient numerical simulations. We postulate the complete airway from the nasal cavity to the trachea most accurately represents dynamic airflow patterns during inhalation and exhalation as they are likely to be affected by downstream anatomical structures. We constructed a 3-Dimensional model from a healthy adult computed tomography (CT) scan. Computational Fluid Dynamics simulations were performed with Ansys Fluent software using the Stress-Blended Eddy Simulation (SBES) turbulence model, looking at airflow patterns, velocity, mucosal temperature and humidity (H2O fraction). We simulated one-and-a-half breathing cycles (5.65 seconds) and discarded the first inhalation cycle to avoid start-up effects. The results demonstrated that airway geometry structures, including the turbinates, the soft palate and the glottic region, affect the flow patterns differently during inspiration and expiration. It also demonstrated phenomena not seen in steady flow simulations or those without the lower respiratory tract geometry, including the nasopharyngeal temperature imprint during inhalation, the nasopharyngeal jet during exhalation and the flow structures of the larynx and laryngeal jet. The inclusion of the exhalation phase demonstrates airflow pre-conditioning before inhalation, which we postulate contributes to achieving alveolar conditions. Alveolar temperature and humidity conditions are not achieved by the nasal cavity alone, and we demonstrate the contribution of the nasopharynx and larynx to air conditioning. Including the complete airway with realistic anatomy and using transient airflow modelling provided new insights into the physiology of the respiratory cycle.
Background Nasal adhesions (NAs) are a known complication of nasal airway surgery. Even minor NAs can lead to significant postoperative nasal airway obstruction (NAO). Division of such NAs often provides much greater relief than anticipated. Objective We examine the impact of NAs at various anatomical sites on nasal airflow and mucosal cooling using computational fluid dynamics (CFD) and multiple test subjects. Methods CT scans of healthy adult subjects were used to construct three-dimensional nasal airway computational models. A single virtual 2.5 mm diameter NA was placed at one of five sites commonly seen following NAO surgery within each nasal cavity bilaterally, resulting in 10 NA models and 1 NA-free control for each subject. CFD analysis was performed on each NA model and compared with the subject's NA-free control model. Results 4 subjects were recruited to create 44 computational models. The NAs caused the airflow streamlines to separate, leading to a statistically significant increase in mucosal temperature immediately downstream to the NAs (wake region). Changes in the mucosal temperature in the wake region of the NAs were most prominent in anteriorly located NAs with a mean increase of 1.62 °C for the anterior inferior turbinate NAs ( P < .001) and 0.63 °C for the internal valve NAs ( P < .001). Conclusion NAs result in marked disruption to airflow patterns and reduced mucosal cooling on critical surfaces, particularly in the wake region. Reduced wake region mucosal cooling may be a contributing factor to the exaggerated perception of nasal obstruction experienced by patients with NAs.
Respirators provide protection from inhalation exposure to dangerous substances, such as chemicals and infectious particles, including SARS-COVID-laden droplets and aerosols. However, they are prone to exposure to stale air as masks create a microclimate influenced by the exhaled air. As a result, exhaled air from lungs accumulating in the mask produces a warm and humid environment that has a high concentration of carbon dioxide (CO2), unsuitable for re-inhalation. Fans are a favorable option for respirators to ventilate the mask and remove the stale air. This study utilized computational fluid dynamics simulation consisting of a hybrid Reynolds-averaged Navier–Stokes-large eddy simulation turbulence method to compare the inhalation flow properties for different fan locations (bottom, top, and side) with regular respirator breathing. Three mask positions, top, side, and bottom, were evaluated under two breathing cycles (approximately 9.65 s of breathing time). The results demonstrated that adding a fan respirator significantly decreased internal mask temperature, humidity, and CO2 concentration. The average CO2 concentration decreased by 87%, 67%, and 73% for locations bottom, top, and side, respectively. While the top and side fan locations enhanced the removal of the exhaled gas mixture, the bottom-fan respirator was more efficient in removing the nostril jet gas mixture and therefore provided the least barrier to respiratory function. The results provide valuable insight into the benefits of fan respirators for long-term use for reducing CO2 concentration, mask temperature, and humidity, improving wearer safety and comfort in hazardous environments, especially during the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.