Vitis vinifera (grapevine) is the most economically important deciduous fruit crop, but cultivated grapevine varieties lack adequate innate immunity to a range of devastating diseases. To identify genetic resources for grapevine innate immunity and understand pathogen defense pathways in a woody perennial plant, we focus in this study on orthologs of the central Arabidopsis thaliana defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). The family of EDS1-like genes is expanded in grapevine, and members of this family were previously found to be constitutively upregulated in the resistant variety 'Norton' of the North American grapevine species Vitis aestivalis, while they were induced by Erysiphe necator, the causal agent of grapevine powdery mildew (PM), in the susceptible V. vinifera variety 'Cabernet Sauvignon'. Here, we determine the responsiveness of individual EDS1-like genes in grapevine to PM and salicylic acid, and find that EDS1-like paralogs are differentially regulated in 'Cabernet Sauvignon', while two are constitutively upregulated in 'Norton'. Sequencing of VvEDS1 and VaEDS1 cDNA and genomic clones revealed high conservation in the protein-encoding sequence and some divergence of the promoter sequence in the two grapevine varieties. Complementation of the Arabidopsis eds1-1 mutant showed that the EDS1-like gene with highest predicted amino acid sequence similarity to AtEDS1 from either grapevine varieties is a functional ortholog of AtEDS1. Together, our analyses show that differential susceptibility to PM is correlated with differences in EDS1 expression, not differences in EDS1 function, between resistant 'Norton' and susceptible 'Cabernet Sauvignon'.
Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets.
Flavescence dorée (FD) and Bois noir (BN) are the principal grapevine yellows in Europe caused by distinct phytoplasmas: BN by Candidatus Phytoplasma solani, FD by 16SrV-C and -D phytoplasmas (FDp) transmitted by the introduced Nearctic Deltocephalinae Scaphoideus titanus. FDp is listed as a quarantine pest in the European Union (Regulation (EU) 2019/2072). Black Alder (Alnus glutinosa) is a common asymptomatic host of 16SrV phytoplasmas in Europe and considered the original host of FDp (Malembic-Maher et al. 2020). Palatinate grapevine yellows (PGY) transmitted from alder to grapevine by the Macropsinae Oncopsis alni is not transmissible by S. titanus (Malembic-Maher et al. 2020). Germany is considered free from FD in grapevine and from its vector. A single case in a nursery in 2014 was eradicated (EPPO 2017), and FD was never before detected in a vineyard. Since S. titanus appeared in 2016 in the neighboring French Region of Alsace, monitoring of FD was carried out in Germany following a risk based strategy. It was focused on vineyard plots within a distance of 100 m from stands of alder. A geodata-based risk map (Jalke 2020) was used to localize those plots. All symptomatic vines sampled until September 2020 proved to be infected by BN or, occasionally, by PGY. Eight vines with typical symptoms were sampled in vineyards adjacent to alder stands in the winegrowing region of Rheinhessen in September 2020. Symptoms comprised leaf rolling and discoloration, incomplete lignification, and black pustules arranged in lines along the shoots. Diseased shoots were black and necrotic in December. Leaf midribs were sampled for total nucleic acids extraction. The phytoplasma 16S rRNA gene was amplified by generic primers R16F2/R2-mod followed by a nested PCR using 16Sr(V) group-specific primers R16(V)F1/R1, and primers R16(I)F1/R1 (Lee et al. 1995) to detect ‘Candidatus Phytoplasma solani’, associated with BN. While BN was detected in seven vines, one sample tested positive for 16SrV phytoplasma. This result was confirmed by triplex real-time Taq-Man assay based on rpl14 gene sequences (IPADLAB), by multiplex real-time PCR of map locus as well as by Loop-mediated isothermal amplification (LAMP) according to the EPPO diagnostic standard PM 7/079(2) (EPPO 2016). PCR-products of the map and the vmpA genes (Malembic-Maher et al. 2020) were sequenced and compared to reference sequences to distinguish between FD- and non-FD genotypes. The isolate from the diseased vine (GenBank MW 727272) exhibited 100% identity with map-M38 (GenBank LT221933), a genotype of the map-FD2 cluster. The same genotype was detected in A. glutinosa and Allygus spp. sampled at the infested site. A 234 bp sequence of the first repeat of the vmpA gene (GenBank MW727273) showed 100% identity with the homologous part of isolate FD-92 (GenBank LN680870) of the vmpA-II cluster. It can be concluded, that the symptomatic grapevine was infected by FD and not PGY This is the first report of FD in a productive vineyard in Germany. The infected vine of cv. Silvaner was 25 years old. While infected planting material is an unlikely source of the infection, a transmission of FDp from alder is highly probable. Finding a single FD-infection after several years of testing implies a low risk originating from the wild compartment, but the approach and possible establishment of S. titanus expected to be able to colonize the area (Jeger et al. 2016) justifies further monitoring activities. The infected vine was eradicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.