Background: Kunitz-type inhibitors provide a suitable scaffold for novel elastase inhibitors. Results: The inhibitor ShPI-1 was modified for pancreatic elastase binding, and the crystal structure of the complex was elucidated and analyzed. Conclusion: The extended protease-inhibitor interactions provide a potential switch to direct inhibitor selectivity toward elastases. Significance: These results will help to design novel elastase inhibitors for the treatment of tissue destruction diseases.
Terminally sialylated oligosaccharides were synthesised employing recombinant trans-sialidase from Trypanosoma cruzi. Regio- and stereoselectively Sia-alpha(2-3)-Gal-betaR derivatives could be obtained in respectable yields, using combined chemical and enzymatic methodologies. An array of different disaccharide precursors such as Gal-beta(1-3)-GalNAc-alphaSer/Thr, lactosides and lactosamide derivatives were sialylated and successfully purified by facile isolation procedures. Depending on the acceptor structure isolated, yields for trans-sialylation products were between 20 and 60%.
Recombinant transsialidase from Trypanosoma cruzi (TcTS) was used for the sialylation with natural and non-natural derivatives of neuraminic acid. Neu5Ac-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe was prepared in 80 % yield. Correspondingly, the modified trisaccharide derivatives Neu5Prop-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe (32 %) and Neu5Gc-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe (Prop=propanoyl, Gc=glycolyl) were obtained in 60 % yield, respectively.
Human α1,3-fucosyltransferase IX catalyzes the transfer of l-fucose from guanosine diphosphate-β-L-fucose to N-acetyllactosamine, generating a Lewis X epitope, and is thereby involved in the synthesis of fucosylated cell surface glycoconjugates. It contains three putative N-glycosylation sites (Asn62, Asn101 and Asn153). The current study considers the functional role of these potential N-glycosylations within the enzyme. We produced truncated variants of human fucosyltransferase IX containing the soluble extracellular catalytic domain. To analyze the relevance of each N-glycosylation site, several genomic mutant DNAs encoding a glutamine (Gln/Q) instead of the asparagine residue were created prosperously using site-directed mutagenesis and subsequently expressed in Spodoptera frugiperda cells applying a baculovirus expression system. After production and purification of these variants of human FucT IX, the wild-type (wt) enzyme and the variants were characterized regarding their activity and kinetic properties. The variants showed lower activity than the wt FucT, whereas the individual N-glycosylation sites had different effects on the enzyme activity and kinetic parameters. While the single variant N62Q still showed ∼60% of wt activity and N101Q retained ∼30% activity, replacement of Asn153 by glutamine led to an almost complete loss of enzymatic activity. The same could be observed for variants missing two or more putative N-glycosylation sites, which indicated the importance of N-glycosylation for enzyme stability and activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.