T-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling1. In this study we report the presence of loss-of-function mutations and deletions of EZH2 and SUZ12 genes, encoding critical components of the Polycomb Repressive Complex 2 (PRC2) complex2,3, in 25% of T-ALLs. To further study the role of the PRC2 complex in T-ALL, we used NOTCH1-induced animal models of the disease, as well as human T-ALL samples, and combined locus-specific and global analysis of NOTCH1-driven epigenetic changes. These studies demonstrated that activation of NOTCH1 specifically induces loss of the repressive mark lysine-27 tri-methylation of histone 3 (H3K27me3)4 by antagonizing the activity of the Polycomb Repressive Complex 2 (PRC2) complex. These studies demonstrate a tumor suppressor role for the PRC2 complex in human leukemia and suggest a hitherto unrecognized dynamic interplay between oncogenic NOTCH1 and PRC2 function for the regulation of gene expression and cell transformation.
We have examined changes in the chromatin landscape during muscle differentiation by mapping the genome-wide location of ten key histone marks and transcription factors in mouse myoblasts and terminally differentiated myotubes, providing an exceptionally rich dataset that has enabled discovery of key epigenetic changes underlying myogenesis. Using this compendium, we focused on a well-known repressive mark, histone H3 lysine 27 trimethylation, and identified novel regulatory elements flanking the myogenin gene that function as a key differentiation-dependent switch during myogenesis. Next, we examined the role of Polycomb-mediated H3K27 methylation in gene repression by systematically ablating components of both PRC1 and PRC2 complexes. Surprisingly, we found mechanistic differences between transient and permanent repression of muscle differentiation and lineage commitment genes and observed that the loss of PRC1 and PRC2 components produced opposing differentiation defects. These phenotypes illustrate striking differences as compared to embryonic stem cell differentiation and suggest that PRC1 and PRC2 do not operate sequentially in muscle cells. Our studies of PRC1 occupancy also suggested a "fail-safe" mechanism, whereby PRC1/Bmi1 concentrates at genes specifying nonmuscle lineages, helping to retain H3K27me3 in the face of declining Ezh2-mediated methyltransferase activity in differentiated cells.chip-Seq | chromatin modifications | muscle development | transcriptional regulation R egulation of the transcriptome through dynamic changes in chromatin plays an important role in lineage commitment and differentiation. Multiple histone modifications control gene expression through recruitment of factors that alter compaction of the chromatin fiber. Transient and long-term gene silencing is enforced through trimethylation of histone H3 on lysines 9 and 27 (hereafter H3K9me3 and H3K27me3) as well as H4K20, whereas gene activation is regulated by methylation of H3K4 and acetylation of the amino-terminal tails of H3 and H4 (reviewed in refs. 1 and 2). Chromatin modifications are often asymmetrically deposited with respect to the transcription start sites (TSS) of genes. Whereas H3K27me3 is found at promoters, throughout gene bodies, and in intergenic regions, histone tail acetylation and H3K4me3 are predominantly found at promoters and the 5′ ends of genes. On the other hand, H3K36 trimethylation marks gene bodies, signifying the passage of RNA polymerase II (PolII) on actively transcribed genes. Promoter acetylation and H3K4 trimethylation are often coordinated, whereas H3K27 and H3K4 trimethylation are largely anticorrelated, except within bivalent regions poised to adopt either active or repressed states at the appropriate developmental stage (3).Previous studies have shown that the pluripotent state of embryonic stem (ES) cells is in part governed by bivalent nucleosomes, characterized by simultaneous H3K4 and H3K27 trimethylation of nucleosomes in lineage commitment genes (3, 4). During ES cell differentiation, ...
The chemokine-mediated recruitment of effector T cells to sites of inflammation is a central feature of the immune response. The extent to which chemokine expression levels are limited by the intrinsic developmental characteristics of a tissue has remained unexplored. We show in mice that effector T cells cannot accumulate within the decidua, the specialized stromal tissue encapsulating the fetus and placenta. Impaired accumulation was in part attributable to the epigenetic silencing of key T cell-attracting inflammatory chemokine genes in decidual stromal cells, as evidenced by promoter accrual of repressive histone marks. These findings give insight into mechanisms of fetomaternal immune tolerance as well as reveal the epigenetic modification of tissue stromal cells as a modality for limiting effector T cell trafficking.
Summary The multi-subunit Sin3 co-repressor complex regulates gene transcription through deacetylation of nucleosomes. However, the full range of Sin3 activities and targets is not well understood. Here, we have investigated genome-wide binding of mouse Sin3 and RBP2 as well as histone modifications and nucleosome positioning as a function of myogenic differentiation. Remarkably, we find that Sin3 complexes spread immediately downstream of the transcription start site on repressed and transcribed genes during differentiation. We show that RBP2 is part of a Sin3 complex, and on a subset of E2F4 target genes, the coordinated activity of Sin3 and RBP2 leads to deacetylation, demethylation, and repositioning of nucleosomes. Our work provides evidence for coordinated binding of Sin3, chromatin modifications, and chromatin remodeling within discrete regulatory regions, suggesting a model in which spreading of Sin3 binding is ultimately linked to permanent gene silencing on a subset of E2F4 target genes.
The WSTF (Williams syndrome transcription factor) protein is involved in vitamin D-mediated transcription and replication as a component of two distinct ATP-dependent chromatin remodeling complexes, WINAC and WICH, respectively. We show here that the WICH complex (WSTF-SNF2h) interacts with several nuclear proteins as follows: Sf3b155/SAP155, RNA helicase II/Gu␣, Myb-binding protein 1a, CSB, the proto-oncogene Dek, and nuclear myosin 1 in a large 3-MDa assembly, B-WICH, during active transcription. B-WICH also contains RNAs, 45 S rRNA, 5 S rRNA, 7SL RNA, and traces of the U2 small nuclear RNA. The core proteins, WSTF, SNF2h, and nuclear myosin 1, are associated with the RNA polymerase III genes 5 S rRNA genes and 7SL, and post-transcriptional silencing of WSTF reduces the levels of these transcripts. Our results show that a WSTF-SNF2h assembly is involved in RNA polymerase III transcription, and we suggest that WSTF-SNF2h-NM1 forms a platform in transcription while providing chromatin remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.