SummaryMucosal Toll-like receptors (TLRs) respond to pathogens, but remain inert to the indigenous flora, suggesting that the TLRs can receive pathogen-specific signals. For example, TLR4 signalling is activated in CD14-negative epithelial cells by P-fimbriated, uropathogenic Escherichia coli, but not by lipopolysaccharide. The fimbriae use glycosphingolipids as recognition receptors and there is release of ceramide, which is the membrane-anchoring domain of the receptors. In this study, ceramide was identified as a TLR4 agonist and as a putative signalling intermediate between the glycosphingolipid recognition receptors and TLR4. Exogenous ceramide activated a TLR4-dependent epithelial cell response, as shown by exposing stably transfected TLR4-positive or -negative human embryonal kidney cells to C2 and C6 ceramide. A similar, TLR4-dependent response occurred after deliberate release of endogenous long-chained ceramide with sphingomyelinase. Microbial ligands with glycosphingolipid specificity (P fimbriae or the B subunit of Shiga toxin) were shown to increase the levels of ceramide and to trigger a TLR4-dependent response in epithelial cells. The results show that ceramide activates TLR4 signalling and suggest that this mechanism might allow pathogens to elicit mucosal TLR4 responses by perturbing sphingolipid receptors for virulence ligands like P fimbriae.
The gut microbiota is essential for human health, but very little is known about how the composition of this ecosystem can influence and respond to bacterial infections. Here we address this by prospectively studying the gut microbiota composition before, during, and after natural Campylobacter infection in exposed poultry abattoir workers. The gut microbiota composition was analyzed with 16S amplicon sequencing of fecal samples from poultry abattoir workers during the peak season of Campylobacter infection in Sweden. The gut microbiota compositions were compared between individuals who became culture positive for Campylobacter and those who remained negative. Individuals who became Campylobacter positive had a significantly higher abundance of Bacteroides (P = 0.007) and Escherichia (P = 0.002) species than those who remained culture negative. Furthermore, this group had a significantly higher abundance of Phascolarctobacterium (P = 0.017) and Streptococcus (P = 0.034) sequences than the Campylobacter-negative group, which had an overrepresentation of Clostridiales (P = 0.017), unclassified Lachnospiraceae (P = 0.008), and Anaerovorax (P = 0.015) sequences. Intraindividual comparisons of the fecal microbiota compositions yielded small differences over time in Campylobacter-negative participants, but significant long-term changes were found in the Campylobacter-positive group (P < 0.005). The results suggest that the abundance of specific genera in the microbiota reduces resistance to Campylobacter colonization in humans and that Campylobacter infection can have long-term effects on the composition of the human fecal microbiota.
Campylobacter jejuni and Campylobacter coli bacteremia patients were mainly young and without severe underlying diseases. The bacterial isolates were typically susceptible to antimicrobial agents. The outcome was usually good, regardless of appropriate or inappropriate antimicrobial treatment given at the hospital.
Avian influenza virus (AIV) surveillance in Antarctica during 2013 revealed the prevalence of evolutionarily distinct influenza viruses of the H11N2 subtype in Adélie penguins. Here we present results from the continued surveillance of AIV on the Antarctic Peninsula during 2014 and 2015. In addition to the continued detection of H11 subtype viruses in a snowy sheathbill during 2014, we isolated a novel H5N5 subtype virus from a chinstrap penguin during 2015. Gene sequencing and phylogenetic analysis revealed that the H11 virus detected in 2014 had a >99.1% nucleotide similarity to the H11N2 viruses isolated in 2013, suggesting the continued prevalence of this virus in Antarctica over multiple years. However, phylogenetic analysis of the H5N5 virus showed that the genome segments were recently introduced to the continent, except for the NP gene, which was similar to that in the endemic H11N2 viruses. Our analysis indicates geographically diverse origins for the H5N5 virus genes, with the majority of its genome segments derived from North American lineage viruses but the neuraminidase gene derived from a Eurasian lineage virus. In summary, we show the persistence of AIV lineages in Antarctica over multiple years, the recent introduction of gene segments from diverse regions, and reassortment between different AIV lineages in Antarctica, which together significantly increase our understanding of AIV ecology in this fragile and pristine environment.IMPORTANCE Analysis of avian influenza viruses (AIVs) detected in Antarctica reveals both the relatively recent introduction of an H5N5 AIV, predominantly of North American-like origin, and the persistence of an evolutionarily divergent H11 AIV. These data demonstrate that the flow of viruses from North America may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within Antarctica. The future introduction of AIVs from North America into the Antarctic Peninsula is of particular concern given that highly pathogenic H5Nx viruses have recently been circulating among wild birds in parts of Canada and the Unites States following the movement of these viruses from Eurasia via migratory birds. The introduction of a highly pathogenic influenza virus in penguin colonies within Antarctica might have devastating consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.