Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.
Instantaneous measurement of optical or geometrical parameters of thin layers is an ambitious aim in many industrial applications. These layers have a variety of use-cases, such as optical bandpassing, dielectric permittivity, or lubrication. Mostly, these layers are in motion due to the production process. In order to observe process parameters, the motion usually has to be disrupted. Thus, the increase of production time due to control purposes is an undesirable drawback of this otherwise suitable technique. In this publication, we present a solution to this particular drawback of most production process monitoring systems exemplarily for film thickness measurement. We show the realization of a measurement principle which has, to our knowledge, never been published before in this application. Therefore, we exploit the advantages of the combination of a linear variable filter with a complementary metal oxide semiconductor sensor array. By an apt readout sequence, this measurement system is able to measure transmission spectra while the target is in motion. We show that this measurement system is able to measure film thicknesses of objects in the range of several 100 nm thickness at up to a velocity of 4 m/s. A reproducibility below 2 nm was acquired.
This paper presents a low-cost hyperspectral measurement setup in a new application based on fluorescence detection in the visible (Vis) wavelength range. The aim of the setup is to take hyperspectral fluorescence images of viscous materials. Based on these images, fluorescent and non-fluorescent impurities in the viscous materials can be detected. For the illumination of the measurement object, a narrow-band high-power light-emitting diode (LED) with a center wavelength of 370 nm was used. The low-cost acquisition unit for the imaging consists of a linear variable filter (LVF) and a complementary metal oxide semiconductor (CMOS) 2D sensor array. The translucent wavelength range of the LVF is from 400 nm to 700 nm. For the confirmation of the concept, static measurements of fluorescent viscous materials with a non-fluorescent impurity have been performed and analyzed. With the presented setup, measurement surfaces in the micrometer range can be provided. The measureable minimum particle size of the impurities is in the nanometer range. The recording rate for the measurements depends on the exposure time of the used CMOS 2D sensor array and has been found to be in the microsecond range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.