Results from field experiments using a fluorescence lidar system to monitor movements of insects are reported. Measurements over a river surface were made at distances between 100 and 300 m, detecting, in particular, damselflies entering the 355 nm pulsed laser beam. The lidar system recorded the depolarized elastic backscattering and two broad bands of laser-induced fluorescence, with the separation wavelength at 500 nm. Captured species, dusted with characteristic fluorescent dye powders, could be followed spatially and temporally after release. Implications for ecological research are discussed.
We propose an optical method for non-invasive characterisation of wood samples based on two optical techniques: time-resolved diffuse optical spectroscopy and gas in scattering media absorption spectroscopy. While the latter is sensitive to gases present inside wood pores, the former extracts information on the bulk material regarding light scattering and absorption. Measurements on spruce samples, cut along different wood fibre directions, are presented to show an example of the advantages of this combined approach: by applying these two non-destructive techniques together, in fact, relevant information on wood such as porosity, permeability and moisture content can be assessed. Furthermore, the chemical composition, internal structure and the anisotropy due to the wood fibres can be investigated.
Preterm newborn infants have a high morbidity rate. The most frequently affected organs where free gas is involved are the lungs and intestines. In respiratory distress syndrome, both hyperexpanded and atelectatic (collapsed) areas occur, and in necrotizing enterocolitis, intramural gas may appear in the intestine. Today, these conditions are diagnosed with x-ray radiography. A bed-side, rapid, nonintrusive, and gas-specific technique for in vivo gas sensing would improve diagnosis. We report the use of noninvasive laser spectroscopy, for the first time, to assess gas content in the lungs and intestines of three full-term infants. Water vapor and oxygen were studied with two low-power diode lasers, illuminating the skin and detecting light a few centimeters away. Water vapor was easily detected in the intestines and was also observed in the lungs. The relatively thick chest walls of the infants prevented detection of the weaker oxygen signal in this study. However, results from a previous phantom study, together with scaling of the results presented here to the typical chest-wall thickness of preterm infants, suggest that oxygen also should be detectable in their lungs.
Remote nocturnal bird classification by spectroscopy in extended wavelength rangesLundin, Patrik; Samuelsson, Per; Svanberg, Sune; Runemark, Anna; Åkesson, Susanne; Brydegaard, Mikkel General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. We present optical methods at a wide range of wavelengths for remote classification of birds. The proposed methods include eye-safe fluorescence and depolarization lidar techniques, passive scattering spectroscopy, and infrared (IR) spectroscopy. In this paper we refine our previously presented method of remotely classifying birds with the help of laser-induced β-keratin fluorescence. Phenomena of excitation quenching are studied in the laboratory and are theoretically discussed in detail. It is shown how the ordered microstructures in bird feathers induce structural "colors" in the IR region with wavelengths of around 3-6 μm. We show that transmittance in this region depends on the angle of incidence of the transmitted light in a species-specific way and that the transmittance exhibits a close correlation to the spatial periodicity in the arrangement of the feather barbules. We present a method by which the microstructure of feathers can be monitored in a remote fashion by utilization of thermal radiation and the wing beating of the bird.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.