Data on toxic effects are at large missing the prevailing understanding of the risks of industrial chemicals. Thyroid hormone (TH) system disruption includes interferences of the life cycle of the thyroid hormones and may occur in various organs. In the current study, high-throughput screening data available for 14 putative molecular initiating events of adverse outcome pathways, related to disruption of the TH system, were used to develop 19 in silico models for identification of potential thyroid hormone system-disrupting chemicals. The conformal prediction framework with the underlying Random Forest was used as a wrapper for the models allowing for setting the desired confidence level and controlling the error rate of predictions. The trained models were then applied to two different databases: (i) an in-house database comprising xenobiotics identified in human blood and ii) currently used chemicals registered in the Swedish Product Register, which have been predicted to have a high exposure index to consumers. The application of these models showed that among currently used chemicals, fewer were overall predicted as active compared to chemicals identified in human blood. Chemicals of specific concern for TH disruption were identified from both databases based on their predicted activity.
The original version of this article unfortunately contains an error in the abstract. The corrected abstract is published below.Abstract Urinary tract infections (UTIs) are among the most common bacterial infections in men and urine culture is gold standard for diagnosis. Considering the high prevalence of culture-negative specimens, any method that identifies such specimens is of interest. The aim was to evaluate a new screening concept for flow cytometry analysis (FCA). The outcomes were evaluated against urine culture, uropathogen species and three conventional screening methods. A prospective, consecutive study examined 1,312 urine specimens, collected during January and February 2012. The specimens were analyzed using the Sysmex UF1000i FCA. Based on the FCA data culture negative specimens were identified in a new model by use of linear discriminant analysis (FCA-LDA). In total 1,312 patients were included. In-and outpatients represented 19.6% and 79.4%, respectively; 68.3% of the specimens originated from women. Of the 610 culture-positive specimens, Escherichia coli represented 64%, enterococci 8% and Klebsiella spp. 7%. Screening with FCA-LDA at 95% sensitivity identified 42% (552/1312) as culture negative specimens when UTI was defined according to European guidelines. The proposed screening method was either superior or similar in comparison to the three conventional screening methods. In conclusion, the proposed/suggested and new FCA-LDA screening method was superior or similar to three conventional screening methods. We recommend the proposed screening method to be used in clinic to exclude culture negative specimens, to reduce workload, costs and the turnaround time. In addition, the FCA data may add information that enhance handling and support diagnosis of patients with suspected UTI pending urine culture.The original article has been corrected.The online version of the original article can be found at http://dx.doi.
The culture negative peritonitis in Sudan 2010 was 46% exceeding 20% of the recommended ISPD (International Society for Peritoneal Dialysis) guidelines. This study reports an update after applying the standard ISPD protocol. The routine method was replaced by ISPD protocol. The culture negative rate using the ISPD guidelines dropped from 46% in the year 2010, to 39% in the year 2011, to 5% in the 2012 and to zero percent in the year 2013. Bacterial and fungal species represent (86.76%) and (13.23%) of infection and most isolates showed low resistance rate to antibiotics. Touch contamination added significantly (p=0.0006) to the risk of contracting Peritonitis. The risk of contracting Peritonitis was 1.53 times higher in the group exposed by touch contamination. None of the other risk factors contributed significantly to Peritonitis. The study highlights the importance of implementing high hygiene practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.