Geological disposal is the preferred option for the final storage of high-level nuclear waste and spent nuclear fuel in most countries. The selected host rock may be different in individual national programs for radioactive-waste management and the engineered barrier systems that protect and isolate the waste may also differ, but almost all programs are considering an engineered barrier. Clay is used as a buffer that surrounds and protects the individual waste packages and/or as tunnel seal that seals off the disposal galleries from the shafts leading to the surface.Bentonite and bentonite/sand mixtures are selected primarily because of their low hydraulic permeability in a saturated state. This ensures that diffusion will be the dominant transport mechanism in the barrier. Another key advantage is the swelling pressure, which ensures a self-sealing ability and closes gaps in the installed barrier and the excavation-damaged zone around the emplacement tunnels. Bentonite is a natural geological material that has been stable over timescales of millions of years and this is important as the barriers need to retain their properties for up to 106 y.In order to be able to license a final repository for high-level radioactive waste, a solid understanding of how the barriers evolve with time is needed. This understanding is based on scientific knowledge about the processes and boundary conditions acting on the barriers in the repository. These are often divided into thermal, hydraulic, mechanical, and (bio)chemical processes. Examples of areas that need to be evaluated are the evolution of temperature in the repository during the early stage due to the decay heat in the waste, re-saturation of the bentonite blocks installed, build-up of swelling pressure on the containers and the surrounding rock, and degradation of the montmorillonite component in the bentonite. Another important area of development is the engineering aspects: how can the barriers be manufactured, subjected to quality control, and installed?Geological disposal programs for radioactive waste have generated a large body of information on the safety-relevant properties of clays used as engineered barriers. The major relevant findings of the past 35 y are reviewed here.
Controlled flow-rate gas injection experiments have been performed on pre-compacted samples of KBS-3 specification M×801 buffer bentonite using helium as a safe replacement for hydrogen. By simultaneously applying a confining pressure and backpressure, specimens were isotropically-consolidated and fully water-saturated under pre-determined effective stress conditions, before injecting gas using a syringe pump. Ingoing and outgoing gas fluxes were monitored. All tests exhibited a conspicuous threshold pressure for breakthrough, somewhat larger than the sum of the swelling pressure and the backpressure. All tests showed a post-peak negative transient leading to steady-state gas flow. Using a stepped history of flow rate, the flow law was shown to be nonlinear. With the injection pump stationary (i.e. zero applied flow rate), gas pressure declined with time to a finite value. When gas flow was reestablished, the threshold value for gas breakthrough was found to be significantly lower than in virgin clay. There is strong evidence to suggest that the capillary pressure for the penetration of interparticle pore space of buffer bentonite is of such a magnitude that normal two-phase flow is impossible. Gas entry and breakthrough is therefore accompanied by the development of microcracks which propagate through the clay from gas source to sink. The experiments suggest that these pathways open under high gas pressure conditions and partially close if gas pressure falls, providing a possible explanation of the nonlinearity of the flow law.
Bentonite, which is envisaged as a promising engineered barrier material for the safe disposal of highly radioactive waste, was and is investigated in different large scale tests. The main focus was and is on the stability (or durability) of the bentonite. However, most countries concentrated on one or a few different bentonites only, regardless of the fact that bentonite performance in different applications is highly variable. Therefore, SKB (Svensk Kärnbränslehantering) set up the first large scale test which aimed at a direct comparison of different bentonites. This test was termed the ‘alternative buffer material test’ and considers eleven different clays which were either compacted (blocks) or put into cages to keep the material together. One so-called package consisted of thirty different blocks placed on top of each other. These blocks surrounded a heated iron tube 10 cm in diameter. Altogether three packages were installed in the underground test laboratory Äspö, Sweden. The first package was terminated 28 months after installation and the bentonite had been exposed for the maximum temperature (130°C) for about one year.Almost all geochemical and mineralogical alterations of the different bentonites (apart from exchangeable cations) were restricted to the contact between iron and bentonite. The increase of the Fe2O3 content was attributed to corrosion of the tube. However, the typical 7 or 14 Å smectite alteration product was not found. At the contact of one sample, siderite was precipitated. Some samples showed anhydrite and organic carbon accumulation and some showed dissolution of clinoptilolite and cristobalite. IR spectroscopy, XRD, and XRF data indicated the formation of trioctahedral minerals/domains in the case of some bentonites. Even more data has to be collected before unambiguous conclusions concerning both alteration mechanisms and bentonite differences can be drawn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.